Lecture 12

CSE 331
Sep 27, 2021

Please have a face mask on

Masking requirement

LIR requires all students, employees and visitors - regardless of their vaccination status - to wear face coverings while inside campus buildings.

If you need it, ask for help

Project groups due FRIDAY! Deadline: Friday, Oct 1, 11:59pm

Forming groups

Propect Ovanies

Group signop form

You form grouss of sias sxactly these fin for the proiect. Below ars the various ioghen

* You Nave tiou choicen in farming your groue:

U) Note

 group of sice tee. It you do not lonow mayy peopie in clase, foel fae to use plagre is ioce for the third groce member.
 you could and up in a grosp of size 2 . Theev will be at moet two grous of sise 2.
.
Submitting your aroup composition

* You thend lo fie in the fors for group componfion by 11才ifipm on Fridang October 4.
4). Deadiline is strict!

Fyou do net submt the fome ip groe sompostion by the dadifs, then you get a rare for the ertles groject.

Upcoming quiz/exams

Quiz 1 Friday NEXT week
Mid-term 1 Monday in TWO weeks

Mid-term 2 Wed two days after Mid-term 1

Piazza post (+sample mid-terms) up by Thur. on preparing for mid-terms

Questions?

Connectivity Problem

Input: Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and s in V

Output: All t connected to s in G

Connected
component of s :
CC(s)

Breadth First Search (BFS)

Build layers of vertices connected to s
$\mathrm{L}_{0}=\{\mathrm{s}\}$

Assume $\mathrm{L}_{0}, . ., \mathrm{L}_{\mathrm{j}}$ have been constructed
L_{j+1} set of vertices not chosen yet but are connected to L_{j}

Stop when new layer is empty

BFS Tree

BFS naturally defines a tree rooted at s

L_{j} forms the j th "level" in the tree
u in L_{j+1} is child of v in L_{j} from which it was "discovered'

Two facts about BFS trees

All non-tree edges are in the same or consecutive layer

If u is in L_{i} then $\operatorname{dist}(\mathrm{s}, \mathrm{u})=\mathrm{i}$

Questions/Comments?

Rest of today's agenda

Computing Connected component

Computing Connected Component

Explore(s)
Start with $R=\{s\}$
While exists (u, w) edge w not in R and u in R
Add w to R
Output $\mathrm{R}^{*}=\mathrm{R}$

Argue correctness on the board...

BFS

Depth First Search (DFS)

i) A) SNWEISTE
B) \angle CTINGSTRK

HPM. WHOH SWMESS AEE DNGSEROUS? LETS SRE..

?

$\underbrace{}_{\text {THE RESSARCH CONPAKNIGS }}$ SNPMEVEONS \& SOMTDED AND WOOSSGOTF: ILL MOE A SREACSHES'D CRGWLES IT

I REPRCY NEED TO STOP USNG DEPIH FRST SEARCHES.

DFS(u)

Mark u as explored and add u to R

For each edge (u, v)

If v is not explored then DFS(v)

Why is DFS a special case of Explore?

A DFS run

Questions/Comments?

Connected components are disjoint

Either Connected components of s and t are the same or are disjoint

Computing all CCs

Questions?

