Lecture 15

CSE 331
Oct 4, 2021

Please have a face mask on

Masking requirement

LIR requires all students, employees and visitors - regardless of their vaccination status - to wear face coverings while inside campus buildings.

If you need it, ask for help

Project groups

```
E note c.244 0 trin =
```


Delay in setting up random groups for 331 project

 group of sive 3 buf had nol corflemed trove grougs belope in 0217 .

Accolspies for the dalay!

Quiz 1 this FRIDAY

Quiz 1 on Friday, Oct 8

 over the instructore and get yourset in the rone.

Mid-term post 1

The mid-term post

 that might be helphal to propare for the mid-temn.
(Thoughts on what to do dyring the wem here: 210

- Work trough the sample mid-term exarsa [0107]. Do not use the sarple mid-serm to dedice anything about the relative covbrage of ditiront topics. (Beie points below
 exams. The actual mid-terms will follow the exact same format for the sample migherna: ide. Irat mid-term will be only T/F whlle the seound ones will be longer oned.
- I ancourage you bo not look at the solifiots to the sample wid-terms bafore you hare sport some qualify time by yourtepf on the mid-berm quastions frut.

- Review the HiN groblemslatutons. HW sctutions are herk 0176.
- Neu will be under (a bit of trme preasure is the eid-ters exams- il might be useluif for you to use the sample mid-ternt to docide on how much lime you are going to ipend os eart quastion. Avo read the instructions on the flest pege and keep them in mind durvg the exam tre insthactions wit of courle be repeated os the exam sheet.

* The dxam will be closed boek and elosed nobes. Howwer, you can bring in one $8.5^{\circ} \times 11^{\prime}$ review sheet. (if you prefer you cat bring in dillertert roview sheets for the two
 however, you ave net albowd bo bring in a magnifying glase. The seview theet its to make suro yow do not spend time memoriting definitiora ette. but car concentrate on me main ideas in the material mee have covervd. The exam fas you cas probably make out from the sample mis-temyl will focus on how wall you understarst the material ard not how well you cen exmorice. Howrves, see fent point.
 Howervor, you should use the review aheot to wrile dawn reforencea for various algos etc. wo have sebi in elasa/tika/recitation notas ate, so that you can just

Mid-term post 2

Few thoughts on what to do during the exam

In a previoun pott $\mathbf{6 2 1 8 ,}$ I latod some poikters on how I Thirk you steukd prepare for the mid-Herm exama.
Below are (in no particulay oroce) some treughts on how you should mork on the actual axam
3. Do NOT panic (or delay it as mach as possiblef! And I don't mean this in ether a joing way or a scary way, in these kinds ef exams once jou panic everything ebpe that follows wil ret be good. (Believe me I hrve bebn there] So theidad for you wil be to avoid panicking as much a poonble or mitigate its effocta. Here are sorte specife pointers in tive regast

- Apad all the cuestors aven belore you stat erting aything. This way if you ave shof on time wid you are nat fone at leant you will be working on a question that you heve resd belowe: tring to rake sense of a question frat you are ntading for the first time and under time peessupe never ends well
- You kngw The structure and rumber of questions. Make sure you seb.p a time table on how much time you want to spend on ench questors and stick to that plan. Make sere you ketp at least 10 mins at the end to go over at your arsatrs to make nure you wee not nissing sometring
 mins to try and crack the question often lebds to you spending 15 mins on the question and then you are terrbly short on time.
- I try to order the questions from sasiest to hadest and I tiink I do fins on the average but the ordering might not match why yours. Ege for some resion you might have shoded a partcular part of the book the right before the exam and that parl might be reievint to sidy the last question So what I Nink might a herd question for an average stadest in the class might be easey for you. Rosoding through al questions uptront will aspo heb you identify flese "out of order' questions.

2. Try to reinvent as little of the wheel as possibie.

- Your frat umack on any probiem should be to see if you can suticienty modify the questorviepuf no the wigoritm so that you cen une a soltion from a previous HW

if you try and build something foom sorateh plike and algorithm or a prooff that you obold have juat referenced away, then you will be ahort on time. The suam is Bined in such e way thet if something can be last relerenctit then you ive expected flo do so.
 in the previous calingory or this one.
- If both of the above fal, then try fo answer trom scratch but this should be your last option.

Feedback on CSE 331

官 note 22450 th

Feedback on CSE 331

Every yaur, I ask yall to give feedbock on CSE 391, so here is the fesdback fomm for this year:

Filing in this form is completely optional and anenymous.
 riltry and incorporite as much as l can this tall, some of your sugostions migte have to waif tor the next otleing

I might also dis-agwe with your fpedtack but athen a woek or so, II post my renponop to the foppoack fromy all. So at the very least y all would got so heor my masoning for


```
bantuick
```


Questions?

Interval Scheduling Problem

Input: n intervals $[s(i), f(i))$ for $1 \leq i \leq n$
$\{s(i), \ldots, f(i)-1\}$
Output: A schedule S of the n intervals

No two intervals in S conflict
$|S|$ is maximized

Algorithm with examples

Interval Scheduling via examples

In which we derve an algorithm that solves the interval Scheduling problem via a sequence of exampies.

The problem

it Teme notet we wll solve the fotowing prbbint

Interval Scheduling Problem
 engesents the frish time.

Sample Input and Output

Re-define problem on the board...

Example 1

No intervals overlap

Task 2

Task 1

Algorithm?

No intervals overlap

R: set of requests

Set S to be the empty set

While R is not empty

Choose in R
Add ito S
Remove ifrom R

Return $\mathrm{S}^{*}=\mathrm{S}$

Questions/Comments?

Example 2

At most one overlap/task

Task 1

Algorithm?

R: set of requests

Set S to be the empty set

While R is not empty

Choose in R
Add i to S
Remove alfftanskßthat conflict with ifrom R

Return $\mathrm{S}^{*}=\mathrm{S}$

Example 3

More than one conflict

$$
\text { Task } 4 \text { Task } 5
$$

$$
\text { Task } 3
$$

Set S to be the empty set
While R is not empty
Choose in R
Add ito S
Remove all tasks that conflict with ifrom R
Return $\mathrm{S}^{*}=\mathrm{S}$

Greedily solve your blues!

Arrange tasks in some order and iteratively pick nonoverlapping tasks

Write up a term paper

Party!

Making it more formal

More than one conflict

Task 4 Task 5

$$
\text { Task } 3
$$

Set S to be the empty set
While R is not empty
Choose i in R that minimizes $v(i)$
Add ito S
Remove all tasks that conflict with ifrom R
Return $\mathrm{S}^{*}=\mathrm{S}$

Questions/Comments?

What is a good choice for $v(i)$?

More than one conflict

Task 4 Task 5

$$
\text { Task } 3
$$

Task 2

Set S to be the empty set
While R is not empty
Choose in R that minimizes $v(i)$
Add ito S
Remove all tasks that conflict with ifrom R
Return $\mathrm{S}^{*}=\mathrm{S}$

$v(i)=f(i)-s(i)$

Smallest duration first

$$
\text { Task } 4 \text { Task } 5
$$

Task 1

Set S to be the empty set
While R is not empty
Choose i in R that minimizes $f(i)-s(i)$
Add i to S
Remove all tasks that conflict with ifrom R
Return $\mathrm{S}^{*}=\mathrm{S}$

$v(i)=s(i)$

Earliest time first?

Task 4 Task 5
Task 3
Task 2

Task 1

Set S to be the empty set
While R is not empty
Choose i in R that minimizes $s(i)$
Add i to S
Remove all tasks that conflict with ifrom R
Return $\mathrm{S}^{*}=\mathrm{S}$

Not so fast....

Task 4 Task 5

Earliest time first?

Task 3

Task 2
Task 1

Task 6

Set S to be the empty set
While R is not empty
Choose i in R that minimizes $s(i)$
Add i to S
Remove all tasks that conflict with i from R
Return $\mathrm{S}^{*}=\mathrm{S}$

Pick job with minimum conflicts

Task 4 Task 5

Task 3

Task 2
Task 1

Task 6

Set S to be the empty set
While R is not empty
Choose i in R that has smallest number of conflicts
Add ito S
Remove all tasks that conflict with ifrom R
Return $\mathrm{S}^{*}=\mathrm{S}$

Questions/Comments?

Nope (but harder to show)

Set S to be the empty set
While R is not empty
Choose i in R that has smallest number of conflicts
Add i to S
Remove all tasks that conflict with i from R
Return $\mathrm{S}^{*}=\mathrm{S}$

Set S to be the empty set
While R is not empty
Choose in R that has smallest number of conflicts
Add ito S
Remove all tasks that conflict with ifrom R
Return $\mathrm{S}^{*}=\mathrm{S}$

Algorithm?

Set S to be the empty set
While R is not empty
Choose in R that minimizes $v(i)$
Add ito S
Remove all tasks that conflict with ifrom R
Return $\mathrm{S}^{*}=\mathrm{S}$

Earliest finish time first

Set S to be the empty set
While R is not empty
Choose in R that minimizes $f(i)$
Add ito S
Remove all tasks that conflict with i from R
Return $\mathrm{S}^{*}=\mathrm{S}$

Find a counter-example?

Questions/Comments?

Today's agenda

Prove the correctness of the algorithm

Final Algorithm

R : set of requests

Set S to be the empty set
While R is not empty

Choose in R with the earliest finish time
Add i to S
Remove all requests that conflict with ifrom R
Return $\mathrm{S}^{*}=\mathrm{S}$

Argue correctness on the board...

