Lecture 24

CSE 331
Oct 29, 2021

Please have a face mask on

Masking requirement

LIR requires all students, employees and visitors - regardless of their vaccination status - to wear face coverings while inside campus buildings.

Coding P1 due TODAY!

Fri, Oct 29	Counting inversions $\mathrm{E}^{[16} \mathrm{D}^{614} \mathrm{DF}^{[17} \mathrm{x}^{2}$	[KT, Sec 5.3] (Project (Problem 1 Coding) in)
Mon, Nov 1	Multiplying large integers $\mathbf{D}^{F 19} \mathbf{D}^{F 18} \mathbf{D}^{517} \mathrm{x}^{2}$	[KT, Sec 5.5] (Project (Problem 1 Reflection) in) Reading Assignment: Unraveling the mystery behind the identity
Wed, Now 3	Closest Pair of Points $\mathrm{D}^{19} \mathrm{Dr}^{18} \mathrm{D}^{\mathrm{F17}} \mathrm{x}^{2}$	[KT , Sec 5.4]
Fri, Nov 5	Kickass Property Lemma $\mathbf{D}^{P 19} \mathrm{DV}^{1818} \mathrm{P}^{177} \mathrm{x}^{2}$	[KT , Sec 5.4] (Project (Problem 2 Coding) in)
Mon, Nov 8	Weighted Interval Scheduling $\mathrm{D}^{F 17} \mathrm{DP}^{517} \mathrm{x}^{2}$	[KT, Sec 6,1] (Project (Problem 2 Reflection) in)

Group formation instructions

Autolab group submission for CSE 331 Project

The lowdown on submitting your project (especialy the coding and refection) problerns as a group on Autolab.

Follow instructions

The instruction below are for Coding Problem 1
You will have to repeat the instructions below for EACH ceding AND refiechon protiem on project en Autolab lwth the mpproprane changes to the actuar probieri)
Form your group on Autolab

Preliminary grading rubric

\square note e401 0 10 $6=$

Preliminary rubrics for reflections problems up

We heve added preliminary gading, nobice for each iefection quetiont
Htpul/
As noted in the page above, please iesp in sind that in astual grading, we will use a grading nubris that expands on the pretininary grading nibrie, ie. you ars NOT seeing the firal rubic that wil be unet to gride your subrissone.

Preliminary Grading Guidelines

Below is a powiminay instavtation of the gerenc gading nitric above for iall ten parts of Probiers 1. In astual grading, we will use a grading nutric that expande on the preliminary grating ntric below.

- Levelo

1. The milhos did not retpond with all to stives On
2. Anseren may not be entirify mievert to the assignmet.

- Levels

 Anewers may seem perfunctory.
- Exela

1. The whens mapond wth all 10 stakas horouply and hougheligg ANO
2. The asthons clewly demonabute their grasp of the euentions and the varioue perspecities sach stakeholdier might have on the wave deapr ANO
3. They demorutrate that what stabeholders' welie diflers decending on their oen cortast.

Questions/Comments?

Rankings

How close are two rankings?

Google compare rankings		Stomstanat		
	Search			compare rankings
Wet Prstovestons.			All results	
Comparison Reviews		SporscodLux		FIFA.com - Compare Teams Wh FiFA com you can compare the progess of us to four teams in the FIFACoca-Cola Words
			SEnRCH Hstcay	
Ranking-Wiupeda, the free encyclopedia			conoweraniops	Ranking See how teams have fisen and fellen since hugust 1993 and pirpeirt their www ifs.comthordifoothabirselkingicomperelcompareloars.himl Cacheil pape
In ocmpettion ranking. tems that compare equal receive the same ranking numbec and then a gie is lef in for rankieg fumbers. The number el ranking ..			aryentions	
			Senal	How to Compare Graduate School Rankings \| elfow.com
A Comparison of Ranking Methods for Classifcation Algorithm Solection is tased on Spasmanis rank comelaton coseficent. To comppare aranking nothods, a consination of Frosirran's tant and Dimn's muetple com:- 			Comal Itym	graduate schools and their reakings a studert can choose which one fis her ... By eltow Edjcation Esifor ' Difficuty: Moderale - 0 posts
College Footbal Ranking Comparison www.masayyratings com/edicompare htm				hema that compare egual restive the same ranking number, which is the mean of what they would have under ord nal rankings. Equivalenty, the ranking number of 1 plus the number of - en.wilipodia orglwivinaiking Ephacoedreiti
Colege Busketbal Ranking Corparison 243246245248241251247249248244 Ranking Volaton $\% 254$ wwimasseyratiges comeld/cempare Hen.				Ranking Compare Ask Gcoge Yatioo Search \| Web browser tood - Shows search results tor a given keyword er phase on the too tree engines, Goople. Yeboo and Msh
FIFA com - Compare Teams Wigh firt con you can compare the progess ef up to tor wams in he fifacoca-Cala Word Ranking. Seet how thovs have hoen and tolen shoce Augut 1983 - 				SchoolDigger.com - School Rankings, Reviows and More - Public and .. Find the best elemertary. midde. and tigh schocis. Sesrch for schools reas any address, compare test scopes. sont by school ranking. cisss sises. and more using Schooldigetr.
GetEducated.com \| Rato, Rank \& Compare Orline Colleges \& Degrees nwingeteosicolod conn -				Celloge and university rankings - Wikipodia, the free encyclopedia The Colegt and university rankings are s ists of unversifes and liberal arts coleges in tigher sducation, an order doteremines by any combinwion of factors.
Compare your webstite rankings in Gcogle Caffoine \& Advanced Web ... Ang 18, 2009 -.. To nelo you compare you wetsto rankings fon doogle ath the mexinge 				Interrational ... - Regional and nabional . . Crticism (North America) en wikipoda org/wikiCologe_avd_univarsty_rankings-Enhanced viey
				www hospitalcompare hhe gov

Rest of today's agenda

Formal problem: Counting inversions

Divide and Conquer algorithm

Problem definition on the board...

Solve a harder problem

Input: $a_{1}, . ., a_{n}$
Output: LIST of all inversions

$$
\begin{aligned}
& L=\phi \\
& \text { for } i \text { in } 1 \text { to } n-1 \\
& \text { for } j \text { in } i+1 \text { to } n \\
& \text { If } a_{i}>a_{j} \\
& \quad \text { add }(i, j) \text { to } L
\end{aligned}
$$

return L

Optimal for the listing problem

Example 1: All inversions-- (2i-1,2i)

2	1	3	4	6	5	7	8

Only check (i,i+1) pairs

Q1: Solve listing problem in $O(n)$ time?

Q2: Recursive divide and conquer algorithm to count the number of inversions?

CountInv (a,n)

$$
\begin{aligned}
& \text { if } n=1 \text { return } 0 \\
& \text { if } n=2 \text { return } a_{1}>a_{2} \\
& a_{L}=a_{1}, . ., a_{[n / 2]} \\
& a_{R}=a_{[n / 2]+1}, . ., a_{n} \\
& \text { return Countlnv }\left(a_{L},[n / 2]\right)+\operatorname{Countlnv}\left(a_{R}, n-[n / 2]\right)
\end{aligned}
$$

Can be horribly wrong in general

CountInv (a,n)

$$
\begin{aligned}
& \text { if } n=1 \text { return } 0 \\
& \text { if } n=2 \text { return } a_{1}>a_{2} \\
& a_{L}=a_{1}, \ldots, a_{[n / 2]} \\
& a_{R}=a_{[n / 2]+1}, \ldots, a_{n} \\
& \text { return } \operatorname{Countlnv}\left(a_{L},[n / 2]\right)+\operatorname{Countlnv}\left(a_{R}, n-[n / 2]\right)
\end{aligned}
$$

Example where instance has non-zero (can be $\Omega\left(\mathrm{n}^{2}\right)$) inversions and algo returns 0 ?

Bad case: "crossing inversions"

CountInv (a,n)
if $\mathrm{n}=1$ return 0
if $\mathrm{n}=2$ return $\mathrm{a}_{1}>\mathrm{a}_{2}$
$a_{L}=a_{1}, \ldots, a_{[n / 2]}$
$a_{R}=a_{[n / 2]+1}, \ldots, a_{n}$
return $\operatorname{CountInv}\left(\mathrm{a}_{\mathrm{L}},[\mathrm{n} / 2]\right)+\operatorname{Countlnv}\left(\mathrm{a}_{\mathrm{R}}, \mathrm{n}-[\mathrm{n} / 2]\right)$

> Are a_{L} and a_{R} sorted?

Example 2: Solving the bad case

a_{L} is sorted
First element is a_{L} is larger than first/only element in a_{R}
$\mathrm{O}(1)$ algorithm to count number of inversions?
return size of $a_{\llcorner }$

Example 3: Solving the bad case

a_{R} is sorted
First/only element is a_{L} is smaller than first element in a_{R}
$\mathrm{O}(1)$ algorithm to count number of inversions?
return 0

Solving the bad case

First element of a_{L} is larger than first element of a_{R}

Try to modify the MERGE algorithm

First element of a_{L} is smaller than first element of a_{R}

Divide and Conquer

Divide up the problem into at least two sub-problems

Solve all sub-problems: Mergesort
Recursively solve the sub-problems

Solve stronger sub-problems: Inversions
"Patch up" the solutions to the sub-problems for the final solution

MergeSortCount algorithm

Input: $a_{1}, a_{2}, \ldots, a_{n}$

Output: Numbers in sorted order+ \#inversion

$$
\begin{aligned}
& T(2)=c \\
& T(n)=2 T(n / 2)+c n \\
& O(n \log n) \text { time }
\end{aligned}
$$

$a_{L}=a_{1}, \ldots, a_{n / 2} \quad a_{R}=a_{n / 2+1}, \ldots, a_{n}$
$\left(c_{L}, a_{L}\right)=$ MergeSortCount $\left(a_{L}, n / 2\right)$
$\left(c_{R}, a_{R}\right)=$ MergeSortCount $\left(a_{R}, n / 2\right)$

Counts \#crossing-inversions+ MERGE
return $\left(c+c_{L}+c_{R}, a\right)$

MERGE-COUNT $\left(a_{1}, a_{R}\right)$

$$
a_{L}=I_{1}, \ldots, I_{n} \quad a_{R}=r_{1}, \ldots, r_{m}
$$

$$
c=0
$$

$$
i, j=1
$$

while $\mathrm{i} \leq \mathrm{n}$ ' and $\mathrm{j} \leq \mathrm{m}$

$$
\text { if } I_{i} \leq r_{j}
$$

i ++
add I_{i} to output
else

$$
\begin{aligned}
& \text { add } r_{j} \text { to output } \\
& \text { j ++ } \\
& \text { c += n'- } i+1
\end{aligned}
$$

Output any remaining items return c

