
Lecture 25

CSE 331
Nov 1, 2021

Please have a face mask on

Reflection P1 due TODAY!

Group formation instructions

Follow instructions EXACTLY as they are stated

Including accepting the invitation

Preliminary grading rubric

Questions/Comments?

Solving the bad case

aL aR

First element of aL is larger than first element of aR

First element of aL is smaller than first element of aR

5 6 …..

aL aR

1

5 6 …..

aL aR

1

Try to
modify

the
MERGE

algorithm

MERGE-COUNT(aL,aR)

aL = l1,…, ln’ aR = r1,…, rm

c = 0
i,j = 1

if li ≤ rj
i ++

else

j ++
c += n’- i +1

return c

5 6 …..

aL aR

1

5 6 …..

aL aR

1

add li to output

add rj to output

Output any remaining items

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

“Patch up” the solutions to the sub-problems for the final solution

Solve all sub-problems: Mergesort

Solve stronger sub-problems: Inversions

MergeSortCount algorithm

Input: a1, a2, …, an Output: Numbers in sorted order+ #inversion

MergeSortCount(a, n)

If n = 2 return (a1 > a2, min(a1,a2); max(a1,a2))

aL = a1,…, an/2 aR = an/2+1,…, an

return (c+cL+cR,a)

(cL, aL) = MergeSortCount(aL, n/2)

(cR, aR) = MergeSortCount(aR, n/2)

(c, a) = MERGE-COUNT(aL,aR) Counts #crossing-inversions+
MERGE

O(n)

T(2) = c

T(n) = 2T(n/2) + cn

O(n log n) time

If n = 1 return (0 , a1)

Questions/Comments?

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

“Patch up” the solutions to the sub-problems for the final solution

Improvements on a smaller scale

Greedy algorithms: exponential à poly time

(Typical) Divide and Conquer: O(n2) à asymptotically smaller running time

Multiplying two numbers

Given two numbers a and b in binary

a=(an-1,..,a0) and b = (bn-1,…,b0)

Compute c = a x b
Elementary

school
algorithm is

O(n2)

The current algorithm scheme

a � b = �22[n/2] + (+)�2[n/2] +

Mult over n
bits

Multiplication over n/2 bit inputs

Shift by O(n) bits

Adding O(n) bit numbers

T(n) ≤ 4T(n/2) + cn
T(1) ≤ c

T(n) is O(n2)

