Lecture 25

CSE 331
Nov 1, 2021

Please have a face mask on

Masking requirement

LIR requires all students, employees and visitors - regardless of their vaccination status - to wear face coverings while inside campus buildings.

Reflection P1 due TODAY!

Fri, Oct 29	Counting inversions $\mathbf{D}^{818} \mathrm{D}^{616} \mathrm{D}^{17} \mathrm{x}^{4}$	[KT, Sec 5.3] (Project (Problem 1 Coding) in)
Mon, Nov 1	Multiplying large integers $\mathrm{D}^{519} \mathrm{D}^{518} \mathrm{D}^{817} \mathrm{x}^{2}$	[KT, Sec 5.5] (Project (Problem 1 Reflection) in) Reading Assignment: Unraveling the mystery behind the identity
Wed, Now 3	Closest Pair of Points $\mathrm{D}^{19} \mathrm{Dr}^{18} \mathrm{D}^{F 17} x^{2}$	[KT, Sec 5.4]
Fri, Nov 5		[KT, Sec 5.4] (Project (Problem 2 Coding) in)
Mon, Nov 8	Weighted Interval Scheduling $\mathrm{D}^{F 18} \mathrm{D}^{517} \mathrm{x}^{2}$	[KT, Sec 6,1] (Project (Problem 2 Reflection) in)

Group formation instructions

Autolab group submission for CSE 331 Project

The lowdown on submitting your project (especialy the coding and refection) problerns as a group on Autolab.

Follow instructions

The instruction below are for Coding Problem 1
You will have to repeat the instructions below for EACH ceding AND refiechon protiem on project en Autolab lwth the mpproprane changes to the actuar probieri)
Form your group on Autolab

Including accepting the invitation

Issues with Group formation for Coding Problem 1

I nouk a quick gimee in the groups formed for the coding probiem 1 for the pejoct. Mout of you did fellow the inuructiont ise foeming group. which ia groat
Unforturately. some of you did not. In particulst, there are three potental issues for some grovps:

1. Not all grovp menhers conflimed their memberships ies after one group merber hes crewbd the group on Autolat, the owher groups members have fo explicity acoept

- Erriest way to check. $\begin{aligned} & \text { you tall in this category ia to thither chock your group seting an the Coding Problem } 1 \text { page an Autolab or see your score on Autalab foe coding }\end{aligned}$ problem it.
- it you tal in thit calagory, you have EI 10pm tonight (Sat, Oct 30y is accept thd invitation and then emal me once you are done.
o Ator I heor back from you, Ill make suv you get the porvect number of points for Coding Problem F 1 (gurrenty you thould have a zwol).
s iffor some reason Autobab does cot aliow you to accegt the initation because the deadine is past, email me with that inforination as welt.

2. Srovp size is not esactly three. For some of the groups. I give explict permission to swbmit ingroups of sine as. Itowever, fi did not axplicitly give jou permission by
 retponding in time as NOT a vald mason to subent withoyt getting my eaplicit permission.

* it you hal in the above category you heve til fopm tenight (Bat, Oet 30\% te amall ese and pat my axplicit perminaion to tubevit in groups of alas a3.
- if you do not do the ibove, then YOU WILL GET A ZERO ON THE ENTRRE PAOJECT and polennaly a later grade reduction in your final CSE S31 grade. Bo make iae you bind me that emal by 10 gm toright.

Preliminary grading rubric

\square note e401 0 10 $6=$

Preliminary rubrics for reflections problems up

We heve added preliminary gading, nobice for each iefection quetiont
Htpul/
As noted in the page above, please iesp in sind that in astual grading, we will use a grading nubris that expands on the pretininary grading nibrie, ie. you ars NOT seeing the firal rubic that wil be unet to gride your subrissone.

Preliminary Grading Guidelines

Below is a powiminay instavtation of the gerenc gading nitric above for iall ten parts of Probiers 1. In astual grading, we will use a grading nutric that expande on the preliminary grating ntric below.

- Levelo

1. The milhos did not retpond with all to stives On
2. Anseren may not be entirify mievert to the assignmet.

- Levels

 Anewers may seem perfunctory.
- Exela

1. The whens mapond wth all 10 stakas horouply and hougheligg ANO
2. The asthons clewly demonabute their grasp of the euentions and the varioue perspecities sach stakeholdier might have on the wave deapr ANO
3. They demorutrate that what stabeholders' welie diflers decending on their oen cortast.

Questions/Comments?

Solving the bad case

First element of a_{L} is larger than first element of a_{R}

Try to modify the MERGE algorithm

First element of a_{L} is smaller than first element of a_{R}

MERGE-COUNT $\left(a_{1}, a_{R}\right)$

$$
a_{L}=I_{1}, \ldots, I_{n} \quad a_{R}=r_{1}, \ldots, r_{m}
$$

$$
c=0
$$

$$
i, j=1
$$

while $\mathrm{i} \leq \mathrm{n}$ ' and $\mathrm{j} \leq \mathrm{m}$

$$
\text { if } I_{i} \leq r_{j}
$$

i ++
add I_{i} to output
else

$$
\begin{aligned}
& \text { add } r_{j} \text { to output } \\
& \text { j ++ } \\
& \text { c += n'- } i+1
\end{aligned}
$$

Output any remaining items return c

Divide and Conquer

Divide up the problem into at least two sub-problems

Solve all sub-problems: Mergesort
Recursively solve the sub-problems

Solve stronger sub-problems: Inversions
"Patch up" the solutions to the sub-problems for the final solution

MergeSortCount algorithm

Input: $a_{1}, a_{2}, \ldots, a_{n}$

Output: Numbers in sorted order+ \#inversion

$$
\begin{aligned}
& T(2)=c \\
& T(n)=2 T(n / 2)+c n \\
& O(n \log n) \text { time }
\end{aligned}
$$

$a_{L}=a_{1}, \ldots, a_{n / 2} \quad a_{R}=a_{n / 2+1}, \ldots, a_{n}$
$\left(c_{L}, a_{L}\right)=$ MergeSortCount $\left(a_{L}, n / 2\right)$
$\left(c_{R}, a_{R}\right)=$ MergeSortCount $\left(a_{R}, n / 2\right)$

Counts \#crossing-inversions+ MERGE
return $\left(c+c_{L}+c_{R}, a\right)$

Questions/Comments?

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems
"Patch up" the solutions to the sub-problems for the final solution

Improvements on a smaller scale

Greedy algorithms: exponential \rightarrow poly time
(Typical) Divide and Conquer: $\mathrm{O}\left(\mathrm{n}^{2}\right) \rightarrow$ asymptotically smaller running time

Multiplying two numbers

Given two numbers a and b in binary

$$
a=\left(a_{n-1}, . ., a_{0}\right) \text { and } b=\left(b_{n-1}, \ldots, b_{0}\right)
$$

Compute $\mathrm{c}=\mathrm{ax} \mathrm{b}$

Elementary
 school
 algorithm is
 $O\left(n^{2}\right)$

The current algorithm scheme

$$
\begin{aligned}
& T(n) \leq 4 T(n / 2)+c n \\
& T(1) \leq c
\end{aligned}
$$

