Lecture 26

CSE 331 Nov 3, 2021

Please have a face mask on

Masking requirement

UB_requires all students, employees and visitors – regardless of their vaccination status – to wear face coverings while inside campus buildings.

https://www.buffalo.edu/coronavirus/health-and-safety/health-safety-guidelines.html

Coding P2 due Friday

Fri, Nov S	Kickass Property Lemma D ²¹⁹ D ²¹⁸ D ²¹⁷ x ⁸	(KT, Sec 5.4) (Project (Problem 2 Coding) in)
Mon, Nov 8	Weighted Interval Scheduling C ^{F19} C ^{F17} x ³	(KT, Sec 6.1) (Project (Problem 2 Reflection) in)
Wed, Nov 10	Recursive algorithm for weighted interval scheduling problem P ¹¹ C ¹¹ x ¹	[KT, Sec 6.1] (HW 6 out)
Fri, Nov 12	Subset sum problem C ^{F19} C ^{F18} C ^{F19} x ²	[KT, Sec 6.1, 6.2, 6.4]
Mon, Nov 15	Dynamic program for subset sum 2719 2718 2717 x1	(KT, Sec 6.4)
Wed, Nov 17	Shortest path problem (2) ⁷¹⁹ (2) ⁷¹⁹ (2) ⁷¹⁷ x ²	[KT, Sec 6.8] (HW 7 out, HW 6 in)
Fri, Nov 19	Beilman-Ford algorithm C ^{F18} C ^{F18} C ^{F18} C ^{F17} x ⁴	[KT, Sec 6.8]
Mon, Nov 22	The P vs. NP problem P ¹⁹	(KT, Sec 8.1)
Wed, Nov 24	No class	Fall Recess
Fri, Nov 26	No class	Fall Recess
Mon, Nov 29	More on reductions P ^{F19}	[KT, Sec 8.1]
Wed, Dec 1	The SAT problem P ¹⁰	(KT, Sec 8.2) (HW 8 out, HW 7 in)
Fri, Dec 3	NP-Completeness 11/19	(KT, Sec. 8.3, 8.4) (Project (Problem 3 Coding) in)
Mon, Dec 6	R-coloring problem	(KT, Sec 8.7) (Quiz 2) (Project (Problem 3 Reflection) in)

Group formation instructions

Autolab group submission for CSE 331 Project

The lowdown on submitting your project (especially the coding and reflection) problems as a group on Autolab.

Follow instructions **EXACTLY** as they are stated

The instruction below are for Coding Problem 1

You will have to repeat the instructions below for EACH coding AND reflection problem on project on Autolab (with the appropriate changes to the actual problem).

Form your group on Autolab

Groups on Autolab will NOT be automatically created

You will have to form a group on Autolab by yourself (as a group). Read on for instructions on how to go about this.

Questions/Comments?

Multiplying two numbers

Given two numbers a and b in binary

 $a=(a_{n-1},..,a_0)$ and $b = (b_{n-1},...,b_0)$

Compute c = a x b

The current algorithm scheme

The key identity

$a^{1}b^{0}+a^{0}b^{1}=(a^{1}+a^{0})(b^{1}+b^{0})-a^{1}b^{1}-a^{0}b^{0}$

The final algorithm

 $a \bullet b = a^{1}b^{1} \bullet 2^{2[n/2]} + ((a^{1}+a^{0})(b^{1}+b^{0}) - a^{1}b^{1} - a^{0}b^{0}) \bullet 2^{[n/2]} + a^{0}b^{0}$

Questions/Comments?

Closest pairs of points

Input: n 2-D points $P = \{p_1,...,p_n\}; p_i = (x_i, y_i)$

 $d(p_i, p_j) = ((x_i - x_j)^2 + (y_i - y_j)^2)^{1/2}$

Output: Points p and q that are closest

Group Talk time

O(n²) time algorithm?

1-D problem in time O(n log n) ?

Sorting to rescue in 2-D?

Pick pairs of points closest in x co-ordinate

Pick pairs of points closest in y co-ordinate

Choose the better of the two

A property of Euclidean distance

The distance is larger than the **x** or **y**-coord difference

Questions/Comments?

Problem definition on the board...

Rest of Today's agenda

Divide and Conquer based algorithm

Dividing up P R Q

First n/2 points according to the x-coord

Recursively find closest pairs

 δ = min (**blue**, green)

An aside: maintain sorted lists

 P_x and P_y are P sorted by x-coord and y-coord

 Q_x , Q_y , R_x , R_y can be computed from P_x and P_y in O(n) time

Life is not so easy though

 δ = min (**blue**, green)