Lecture 26

CSE 331
Nov 3, 2021

Please have a face mask on

Masking requirement

LIR requires all students, employees and visitors - regardless of their vaccination status - to wear face coverings while inside campus buildings.

Coding P2 due Friday

Fri, NowS		[KT, Soc S.4) (Project (Problem 2 Cedisg) Iny)
Mon, Nova		(KT, Soc 6.1) Project (Problom 2 Eeftection) Int
Wed, Nov 10	Recussive algortim for weighted intervas scheduing problem $\mathbf{D r}^{131} \mathbf{D}^{177} x^{1}$	MKT, Sec 6.1] arw sout
Fri, Nove 12	Subset sumprobiem $\mathbf{D r}^{+99} \mathbf{D}^{208} \mathbf{D}^{p+9} x^{2}$	$\mathbb{K T}$, Sec 6.1, 6.2.6.4]
Mor, Nov 15		[KT, Soc 6.4]
Wed, Nov 17	Shortest path protiem [[${ }^{\prime \prime \prime} \mathrm{Cr}^{\prime \prime \prime} \mathrm{CY}^{\prime \prime \prime} \mathrm{x}^{+}$	
Fri, Now 19	Belman-Ford algorthm $\mathbf{C y}^{+1 /} \mathbf{c}^{+18} \mathbf{c}^{-1 /} x^{4}$	(KI, Soc 6.8)
Mon, Nov 22	The P vs. NP prociem [8"V	[KT, Sec 8.1]
Wed, Nov 24	No class	Fail Recess
Fri, Nov 26	No class	Fath Recoss
Mon, Nov 29	More on reductions CP^{79}	[KT, Sec *.1]
Wed, Dec 1	The SAT problem $\mathrm{CP}^{\text {Ph }}$	(KK, Soc 8.2) (MW B out, HW 7 ln)
Fri, Dec 3	NP.Completoness $\mathrm{CY}^{\prime \prime}$	[KI, Soc. 8.3, 8.4](Project (Problem 3 Ceding) in)
Mon, Dec 6	k-coloring problem $\mathbf{C Y}^{10}$	KT, $\sec 877$ (0utr 7) (Project (Problem 3 Deflectios) in)

Group formation instructions

Autolab group submission for CSE 331 Project

The lowdown on submitting your project (especialy the coding and refection) problerns as a group on Autolab.

Follow instructions

The instruction below are for Coding Problem 1
You will have to repeat the instructions below for EACH ceding AND refiechon protiem on project en Autolab lwth the mpproprane changes to the actuar probieri)
Form your group on Autolab

Questions/Comments?

Multiplying two numbers

Given two numbers a and b in binary

$$
a=\left(a_{n-1}, . ., a_{0}\right) \text { and } b=\left(b_{n-1}, \ldots, b_{0}\right)
$$

Compute $\mathrm{c}=\mathrm{ax} \mathrm{b}$

Elementary
 school
 algorithm is
 $O\left(n^{2}\right)$

The current algorithm scheme

$$
\begin{aligned}
& T(n) \leq 4 T(n / 2)+c n \\
& T(1) \leq c
\end{aligned}
$$

The key identity

$$
a^{1} b^{0}+a^{0} b^{1}=\left(a^{1}+a^{0}\right)\left(b^{1}+b^{0}\right)-a^{1} b^{1}-a^{0} b^{0}
$$

The final algorithm

Input: $\mathrm{a}=\left(\mathrm{a}_{\mathrm{n}-1}, \ldots, \mathrm{a}_{0}\right)$ and $\mathrm{b}=\left(\mathrm{b}_{\mathrm{n}-1}, \ldots, \mathrm{~b}_{0}\right)$
Mult (a, b)

$$
\begin{aligned}
& \text { If } n=1 \text { return } a_{0} b_{0} \\
& a^{1}=a_{n-1}, \ldots, a_{[n / 2]} \text { and } a^{0}=a_{[n / 2]-1}, \ldots, a_{0}
\end{aligned}
$$

Compute b^{1} and b^{0} from b
$x=a^{1}+a^{0}$ and $y=b^{1}+b^{0}$
Let $p=\operatorname{Mult}(x, y), D=\operatorname{Mult}\left(a^{1}, b^{1}\right), E=\operatorname{Mult}\left(a^{0}, b^{0}\right)$
$F=p-D-E$
return $D \cdot 2^{2[n / 2]}+F \cdot 2^{[n / 2]}+E$
$T(1) \leq c$
$\mathrm{T}(\mathrm{n}) \leq 3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}$
$\mathrm{O}\left(\mathrm{n}^{\left.\left.\log _{2}{ }^{3}\right)=\mathrm{O}\left(\mathrm{n}^{1.59}\right), ~\right) ~(1)}\right.$
run time

All green operations are $O(n)$ time
$a \cdot b=a^{1} b^{1} \cdot 2^{2[n / 2]}+\left(\left(a^{1}+a^{0}\right)\left(b^{1}+b^{0}\right)-a^{1} b^{1}-a^{0} b^{0}\right) \cdot 2^{[n / 2]}+a^{0} b^{0}$

Questions/Comments?

Closest pairs of points

Input: $n 2-D$ points $P=\left\{p_{1}, \ldots, p_{n}\right\} ; p_{i}=\left(x_{i}, y_{i}\right)$

$$
\mathrm{d}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)=\left(\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right)^{2}+\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{j}}\right)^{2}\right)^{1 / 2}
$$

Output: Points p and q that are closest

Group Talk time

$\mathrm{O}\left(\mathrm{n}^{2}\right)$ time algorithm?

1-D problem in time $O(n \log n)$?

Sorting to rescue in 2-D?

Pick pairs of points closest in x co-ordinate

Pick pairs of points closest in y co-ordinate

Choose the better of the two

A property of Euclidean distance

$$
d\left(p_{i}, p_{j}\right)=\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)^{1 / 2}
$$

The distance is larger than the \mathbf{x} or \mathbf{y}-coord difference

Questions/Comments?

Problem definition on the board...

Rest of Today's agenda

Divide and Conquer based algorithm

Dividing up P

First $\mathrm{n} / 2$ points according to the x -coord

Recursively find closest pairs

An aside: maintain sorted lists

P_{x} and P_{y} are P sorted by x-coord and y-coord
$Q_{x}, Q_{y}, R_{x}, R_{y}$ can be computed from P_{x} and P_{y} in $O(n)$ time

An easy case

Life is not so easy though

