Lecture 27

CSE 331
Nov 5, 2021

Please have a face mask on

Masking requirement

LIR requires all students, employees and visitors - regardless of their vaccination status - to wear face coverings while inside campus buildings.

Coding P2 due TODAY!

Fri, NowS		[KT, Soc S.4) (Project (Problem 2 Cedisg) Iny)
Mon, Nova		(KT, Soc 6.1) Project (Problom 2 Eeftection) Int
Wed, Nov 10	Recussive algortim for weighted intervas scheduing problem $\mathbf{D r}^{131} \mathbf{D}^{177} x^{1}$	MKT, Sec 6.1] arw sout
Fri, Nove 12	Subset sumprobiem $\mathbf{D r}^{+99} \mathbf{D}^{208} \mathbf{D}^{p+9} x^{2}$	$\mathbb{K T}$, Sec 6.1, 6.2.6.4]
Mor, Nov 15		[KT, Soc 6.4]
Wed, Nov 17	Shortest path protiem [[${ }^{\prime \prime \prime} \mathrm{Cr}^{\prime \prime \prime} \mathrm{CY}^{\prime \prime \prime} \mathrm{x}^{+}$	
Fri, Now 19	Belman-Ford algorthm $\mathbf{C y}^{+1 /} \mathbf{c}^{+18} \mathbf{c}^{-1 /} x^{4}$	(KI, Soc 6.8)
Mon, Nov 22	The P vs. NP prociem [8"V	[KT, Sec 8.1]
Wed, Nov 24	No class	Fail Recess
Fri, Nov 26	No class	Fath Recoss
Mon, Nov 29	More on reductions CP^{79}	[KT, Sec *.1]
Wed, Dec 1	The SAT problem $\mathrm{CP}^{\text {Ph }}$	(KK, Soc 8.2) (MW B out, HW 7 ln)
Fri, Dec 3	NP.Completoness $\mathrm{CY}^{\prime \prime}$	[KI, Soc. 8.3, 8.4](Project (Problem 3 Ceding) in)
Mon, Dec 6	k-coloring problem $\mathbf{C Y}^{10}$	KT, $\sec 877$ (0utr 7) (Project (Problem 3 Deflectios) in)

Group formation instructions

Autolab group submission for CSE 331 Project

The lowdown on submitting your project (especialy the coding and refection) problerns as a group on Autolab.

Follow instructions

The instruction below are for Coding Problem 1
You will have to repeat the instructions below for EACH ceding AND refiechon protiem on project en Autolab lwth the mpproprane changes to the actuar probieri)
Form your group on Autolab

Have fun @ UB Hacking!

UB

HACKING

 2021Nov 6-7. 2021

Questions/Comments?

Closest pairs of points

Input: $n 2-D$ points $P=\left\{p_{1}, \ldots, p_{n}\right\} ; p_{i}=\left(x_{i}, y_{i}\right)$

$$
\mathrm{d}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)=\left(\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right)^{2}+\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{j}}\right)^{2}\right)^{1 / 2}
$$

Output: Points p and q that are closest

Dividing up P

First $\mathrm{n} / 2$ points according to the x -coord

Recursively find closest pairs

An aside: maintain sorted lists

P_{x} and P_{y} are P sorted by x-coord and y-coord
$Q_{x}, Q_{y}, R_{x}, R_{y}$ can be computed from P_{x} and P_{y} in $O(n)$ time

An easy case

Life is not so easy though

Questions/Comments?

Euclid to the rescue (?)

$$
d\left(p_{i}, p_{j}\right)=\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)^{1 / 2}
$$

The distance is larger than the \mathbf{x} or \mathbf{y}-coord difference

Life is not so easy though

$\delta=\min$ (blue, green)

All we have to do now

$\delta=\min$ (blue, green)

The algorithm so far...

Input: n 2-D points $P=\left\{p_{1}, \ldots, p_{n}\right\} ; p_{i}=\left(x_{i}, y_{i}\right)$

$$
O(n \log n)+T(n)
$$

Sort P to get P_{x} and P_{y}
Closest-Pair (P_{x}, P_{y})
On $\log \mathrm{n})$

$$
T(<4)=c
$$

If $\mathrm{n}<4$ then find closest point by brute-force

$$
T(n)=2 T(n / 2)+c n
$$ Q is first half of P_{x} and R is the rest

$\mathrm{O}(\mathrm{n})$
Compute $\mathrm{Q}_{x}, \mathrm{Q}_{y}, \mathrm{R}_{x}$ and R_{y}
On)
$O(n \log n)$ overall
$\left(q_{0}, q_{1}\right)=$ Closest-Pair $\left(Q_{x}, Q_{y}\right)$
$\left(r_{0}, r_{1}\right)=$ Closest-Pair $\left(R_{x}, R_{y}\right)$
$\mathrm{O}(\mathrm{n})$
$\delta=\min \left(d\left(q_{0}, q_{1}\right), d\left(r_{0}, r_{1}\right)\right)$
$\mathrm{O}(\mathrm{n})$
return Closest-in-box $\left(S,\left(q_{0}, q_{1}\right),\left(r_{0}, r_{1}\right)\right)$

Rest of today's agenda

Implement Closest-in-box in O(n) time

