
Lecture 32

CSE 331
Nov 17, 2021

Please have a face mask on

HW 7 out

Subset sum problem

n integers w1, w2, …, wnInput:

bound W

Output: subset S of [n] such that

(1) sum of wi for all i in S is at most W

(2) w(S) is maximized

Recursive formula

OPT(j, B) = max value out of w1,..,wj with bound B

If wj > B

OPT(j, B) = OPT(j-1, B)

else

OPT(j, B) = max { OPT(j-1, B), wj + OPT(j-1,B-wj) }

Questions?

Algo run on the board…

Recursive formula

OPT(j, B) = max value out of w1,..,wj with bound B

If wj > B

OPT(j, B) = OPT(j-1, B)

else

OPT(j, B) = max { OPT(j-1, B), wj + OPT(j-1,B-wj) }

j not in OPT j in OPT

Can compute final
S with recursion/

backtracking

Knapsack problem

n integers w1, w2, …, wnInput:

bound W

Output: subset S of [n] such that

(1) sum of wi for all i in S is at most W

n pairs (w1, v1), …, (wn, vn),

(2) w(S) is maximized(2) v(S) is maximized

Questions?

Shortest Path Problem

Input: (Directed) Graph G=(V,E) and for every edge e has a cost ce (can be <0)

t in V

Output: Shortest path from every s to t

1 1

100

-1000

899

s t

Shortest path has
cost negative

infinity

Assume that G
has no negative

cycle

When to use Dynamic Programming

There are polynomially many sub-problems

Optimal solution can be computed from solutions to sub-problems

There is an ordering among sub-problem that allows for iterative solution

Richard Bellman

Rest of today’s agenda

Bellman-Ford algorithm

