Lecture 33

CSE 331
Nov 19, 2021

Please have a face mask on

Masking requirement

$\underline{U R}$ requires all students, employees and visitors - regardless of their vaccination status - to wear face coverings while inside campus buildings.
https://www.buffalo.edu/coronavirus/health-and-safety/health-safety-guidelines.html

HW 7 reminders

Homework 7

Due by 8:00am, Wednesday, December 1, 2021.

Make sure you follow all the homework policies.
All submissions should be done via Autolab.

Question 1 (Ex 2 in Chap 6) [50 points]

The Problem

Exercise 2 in Chapter 6. The part (a) and (b) for this problem correspond to the part (a) and part (b) in Exercise 2 in Chapter 6 in the textbook.

Sample Input/Output

See the textbook for a sample input and the corresponding optimal output solution.

! Note on Timeouts

For this problem the total timeout for Autolab is 480s, which is higher the the usual timeout of 180 s in the earlier homeworks. So if your code takes a long time to run it'll take longer for you to get feedback on Autolab. Please start early to avoid getting deadlocked out before the submission deadline.

Shortest Path Problem

Input: (Directed) Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and for every edge e has a cost c_{e} (can be <0)
t in V

Output: Shortest path from every s to t

Assume that G
has no negative cycle

When to use Dynamic Programming

There are polynomially many sub-problems

Richard Bellman
Optimal solution can be computed from solutions to sub-problems

There is an ordering among sub-problem that allows for iterative solution

Questions?

Today's agenda

Bellman-Ford algorithm

Analyze the run time

Algo on the board...

The recurrence

OPT(u,i) = shortest path from u to t with at most i edges
$\operatorname{OPT}(u, i)=\min \left\{\operatorname{OPT}(u, i-1), \min _{(u, w) \text { in } E}\left\{c_{u, w}+\operatorname{OPT}(w, i-1)\right\}\right\}$

Some consequences

OPT $(u, i)=$ cost of shortest path from u to t with at most i edges

$$
\operatorname{OPT}(u, i)=\min \left\{O P T(u, i-1), \min _{(u, w) \text { in } E}\left\{c_{u, w}+O P T(w, i-1)\right\}\right\}
$$

```
OPT(u,n-1) is shortest path cost between }u\mathrm{ and t
```

Group talk time:
How to compute the shortest path between s and t given all

