Lecture 6

CSE 331 Sep 13, 2021

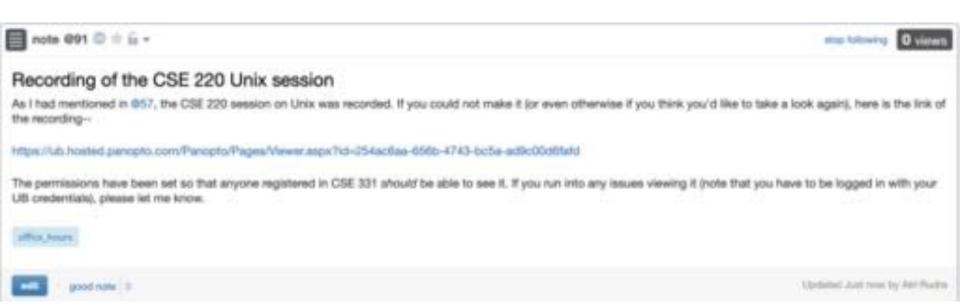
Please have a face mask on

Masking requirement

UB_requires all students, employees and visitors – regardless of their vaccination status – to wear face coverings while inside campus buildings.

https://www.buffalo.edu/coronavirus/health-and-safety/health-safety-guidelines.html

2nd T/F poll up


poli @87 💿 🗄 着 -	stop fullowing 22 viewes
2nd T/F poll	Second W
is the following statement true or false:	

In every Stable Matching problem instance where a man m and woman w have each other as their least preferred partner, the following is true. There is no stable matching for the instance where (m, w) are matched.

(Note by a stable matching problem instance, we mean both the set of men and women as well as all the 2n preference lists.)

O True O False

CSE 220 Unix session recording

My office hour last Friday

Went through the process of writing a proof on the board!

If you need it, ask for help

Register your project groups Deadline: Friday, Oct 1, 11:59pm

CSE 331	Byfiebue	Piezza	Schedule	Homeworks+	Autolials	Project+	Bupport Pages +	C charmi	Sarpin Dama +
You form gr • You f	ave two choice	actly three	your group:	ject. Below are the				n your group.	
		if you pick t					rembers. In particular, za to look for the third		s only two members you cannot submit as a
2				a will be assigned i There will be at m			students who take thi	is ascond option	However, note that if you pick this option
	Submitting y				the form will	allow you to p	sick are of the two op	tions above).	
• You n	wed to fill in th	e form for gr	roup composit	ion by \$1:59pm o	n Friday, Oc	tober 1.			

Oeadline is strict!

If you do not submit the form for group composition by the deadline, then you get a zero for the entire project.

HW 1 gets released this Wed

Wed, Sep	15 Gale Shapley algorithm outputs a stable matching OF COT OF COT
Fri, Sep 17	Efficient algorithms and asymptotic analysis O ¹¹³ O ¹¹³ O ¹¹³ x ²
Mon, Sep	20 Runtime Analysis of Gale-Shapley algorithm O ^{F18} O ^{F18} O ^{F18} e ²
Wed, Sep	22 Graph Basics () ⁽¹⁾ () ⁽¹⁾ () ⁽¹⁾ *
Fri, Sep 24	Computing Connected Component C ¹¹⁰ C ¹¹¹ C ¹¹¹ at
Mon, Sep	27 Explore Algorithm () ¹⁰ () ¹⁰ () ¹¹ x ¹
Wed, Sep	29 Runtime Analysis of BFS algorithm O ⁷¹¹⁸ O ⁷¹¹⁸ O ⁷¹² x ⁴
Fil, Oct 1	More graph stuff O ^{PH} O ^{PH} O ^{PH} x ⁴

Mon, Oct 4	Interval Scheduling Problem Of the Of the Office and	
Wed, Oct 6	Greedy Algorithm for Interval Scheduling C ¹¹⁰ C ¹¹⁰ C ¹¹¹ x ⁴	

Fri, Oct 8 Shortest Path Problem D¹¹⁴ D¹¹⁵ x³

Mon, Oct 11 Mid-term exam: I

Vied, Oct 13 Mid-ferm exam: II

[KT, Sec 1.1] (HW 1 out)

[KT, Sec 1.1] Reading Assignment: Wonst-case runtime analysis notes Reading Assignment: [KT, Sec 1.1, 2.1, 2.2, 2.4]

[KT, Sec 2.3]

[KT, Sec 2.3, 3.1] (HW 2 out, HW 1 in)

(KT, Sec 3.2) Reading Assignment: Care package on trees Reading Assignment: BFS by examples

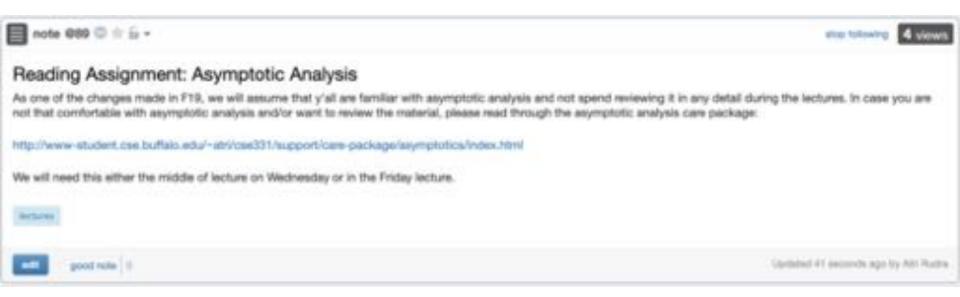
[KT, Sec 3.2]

[KT. Sec 3.3] (HW 3 out, HW 2 in)

[KT, Sec 3.3, 3.6] (Project Team Composition Due) Reading Assignment: [KT, Sec 3.3, 3.4, 3.5, 3.6] Reading Assignment: Care package on topological ordering

[KT, Sec 4.1]

(KT, Sec 4.1) (HW 3 in) (Project out) Fiseding Assignment: [KT, Sec 4.1, 4.2]


(KT, Sec 4.4) (Quiz 1) Reading Assignment: Care package on minimizing maximum latenese

(HW 4 out)

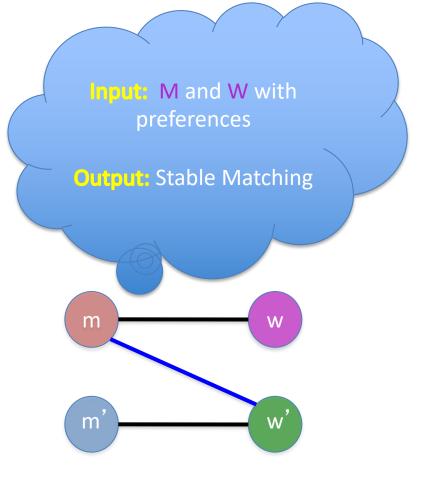
Questions/Comments?

Reading Assignment - I

Reading Assignment - II

Stable Marriage problem

Set of men ${\sf M}$ and women ${\sf W}$


Preferences (ranking of potential spouses)

Matching (no polyandry/gamy in M X W)

Perfect Matching (everyone gets married)

Instablity

Stable matching = perfect matching+ no instablity

Two Questions

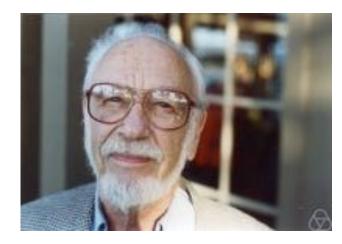
Does a stable marriage always exist?

If one exists, how quickly can we compute one?

The naïve algorithm

Incremental algorithm to produce all n! prefect matchings?

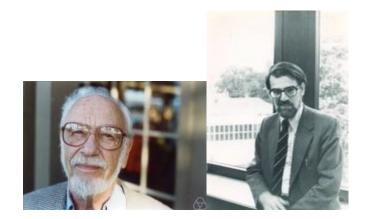
Go through all possible perfect matchings S


If S is a stable matching

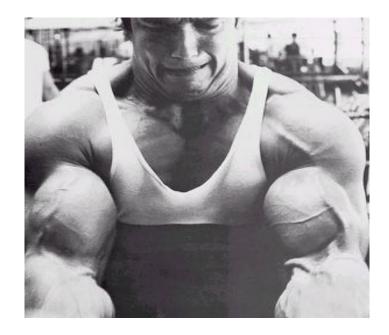
then Stop

Else move to the next perfect matching

Gale-Shapley Algorithm



David Gale


Lloyd Shapley

Moral of the story...

Questions/Comments?

Rest of today's agenda

GS algorithm

Run of GS algorithm on an instance

Prove correctness of the GS algorithm

Back to the board...

Gale-Shapley Algorithm

Intially all men and women are free

While there exists a free woman who can propose

```
Let w be such a woman and m be the best man she has not proposed to

w proposes to m

If m is free

(m,w) get engaged

Else (m,w') are engaged

If m prefers w' to w

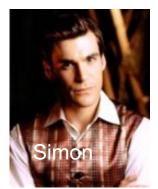
w remains free

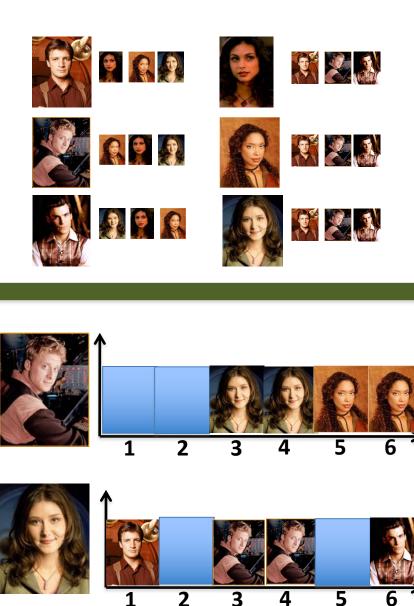
Else

(m,w) get engaged and w' is free
```

Output the engaged pairs as the final output

Preferences





GS algorithm: Firefly Edition

Observation 1

Intially all men and women are free

While there exists a free woman who can propose

Output the engaged pairs as the final output

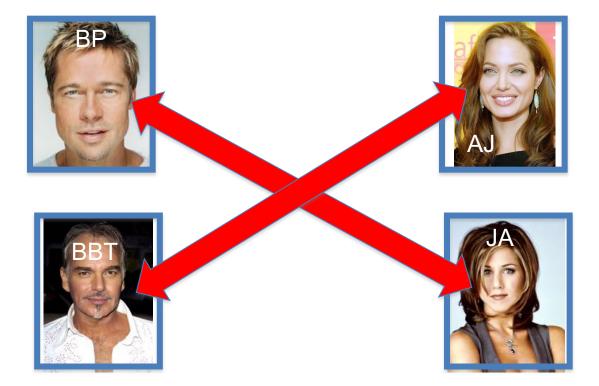
Observation 2

Intially all men and women are free

While there exists a free woman who can propose

Output the set S of engaged pairs as the final output

Questions/Comments?


Why bother proving correctness?

Consider a variant where any free man or free woman can propose

Is this variant any different? Can you prove it?

GS' does not output a stable marriage

