Lecture 8

CSE 331 Sep 16, 2021

Please have a face mask on

Masking requirement

UB_requires all students, employees and visitors – regardless of their vaccination status – to wear face coverings while inside campus buildings.

https://www.buffalo.edu/coronavirus/health-and-safety/health-safety-guidelines.html

If you need it, ask for help

Register your project groups Deadline: Friday, Oct 1, 11:59pm

CSE 331	Ryfiebue	Piezza	Schedule	Homeworks+	Autolials	Project+	Bupport Pages +	C charmi	Sarpin Dama +
Form You form gr • You f	ing gro oups of size ex eve two choice . You can form	ups actly three is in forming your group	(D) for the pro year group: on your own: (Checking Hereworks + Autom Project + Deport Pages + Implement Deport Pages + Project Overview Group signup form for the project. Below are the various logitimes: Implement Implement are group: pour own: Le. you can submit the list of EXACTLY three (1) groups members in your group. Implement option, your group needs to have exactly THREE (2) members. In particular, if your group has only two members you cannot submit as a do not know many people in class, feel free to use plazza to look for the third group member. ms, and you will be assigned a rendom group among all students who take this second option. However, note that if you pick this option prive at size 2. Three will be at most two groups of size 2.					
O: Note Note that if you pick this option, your group needs to have exactly THREE (2) members. In particular, if your group has only two members you cannot submit as a group of size two. If you do not know many people in class, feel free to use plazza to look for the third group member.									
 You can submit just your name, and you will be assigned a random group among all students who take this second option. However, note that if you pick this option you could end up in a group of size 2. There will be at most two groups of size 2. 									
- s	Submitting y	form of to a	p composi submit your gr	tion sup composition (the form will	allow you to p	sick are of the two op	tions above).	
• You n	eed to fill in th	e form for gr	roup composit	ion by \$1:59pm o	n Friday, Oc	tober 1.			

Oeadline is strict!

If you do not submit the form for group composition by the deadline, then you get a zero for the entire project.

Questions/Comments?

Gale-Shapley Algorithm

Intially all men and women are free

While there exists a free woman who can propose

```
Let w be such a woman and m be the best man she has not proposed to

w proposes to m

If m is free

(m,w) get engaged

Else (m,w') are engaged

If m prefers w' to w

w remains free

Else

(m,w) get engaged and w' is free
```

Output the engaged pairs as the final output

The Lemmas

Lemma 1: The GS algorithm has at most n² iterations

Lemma 2: S is a perfect matching

Lemma 3: S has no instability

Proof Details of Lemma 1

Gale Shapley algorithm terminates

This page collects material from Fall 17 incarnation of CSE 331, where we proof details for the claim that the Gale-Shapley algorithm terminates in $O(n^2)$ iterations.

Where does the textbook talk about this?

Section 1.1 in the textbook has the argument (though not in as much detail as below).

Fall 2017 material

Here is the lecture video (it starts from the part where we d the proof details):

Questions/Comments?

Proof technique de jour Proof by contradiction

Source: 4simpsons.wordpress.com

Two obervations

Obs 1: Once m is engaged he keeps getting engaged to "better" women

Obs 2: If w proposes to m' first and then to m (or never proposes to m) then she prefers m' to m

Proof of Lemma 3

Contradiction by Case Analysis

Depending on whether w' had proposed to m or not

Source: 4simpsons.wordpress.com

Case 2: w' had proposed to m

Case 2.1: m had accepted w' proposal

m is finally engaged to w

Thus, m prefers w to w'

4simpsons.wordpress.com

By Obs 1

Case 2.2: m had rejected w' proposal

m was engaged to w'' (prefers w'<u>to w'</u>) By Algo def m is finally engaged to w (prefers w to w'') By Obs 1 m prefers w to w'

4simpsons.wordpress.com

Overall structure of case analysis

Questions?

Extensions

Fairness of the GS algorithm

Different executions of the GS algorithm

Main Steps in Algorithm Design

Definition of Efficiency

An algorithm is efficient if, when implemented, it runs quickly on real instances

Implemented where?

Definition-II

Analytically better than brute force

How much better? By a factor of 2?

Definition-III

Should scale with input size

If N increases by a constant factor, so should the measure

Polynomial running time

At most c·N^d steps (c>0, d>0 absolute constants)

Step: "primitive computational step"

More on polynomial time

Problem centric tractability

Can talk about problems that are not efficient!

Asymptotic Analysis

Travelling Salesman Problem

(http://xkcd.com/399/)

Reading Assignment for today

Which one is better?

The actual run times

Asymptotic Notation

 \leq is O with glasses \geq is Ω with glasses = is Θ with glasses

Another view

remain anonymous on the web, let me know). Silly way to remember Asymptotic notation... Stick figure: Dig 0 "Ceiling of functn" Big 0 Bly Dig 04 Big 12 Big 12 "Floot of functn" feat remain anonymous on the web, let me know).

© Aleksandra Patrzalek, 2012

Properties of O (and Ω)

Another Reading Assignment

CSE 331 Support Pages -

Analyzing the worst-case runtime of an algorithm

Some notes on strategies to prove Big-Oh and Big-Omega bounds on runtime of an algorithm.

The setup

Let A be the algorithm we are trying to analyze. Then we will define T(N) to be the worst-case run-time of A over all inputs of size N. Slightly more formally, let r_A(x) be the number of steps taken by the algorithm A on input x. Then

 $T(N) = \max_{\mathbf{x}: \mathbf{x} \text{ is of use } N} I_{\mathcal{X}}(\mathbf{x}).$

In this note, we present two useful strategies to prove statements like T(N) is O(g(N)) or T(N) is O(h(N)). Then we will analyze the run time of a very simple algorithm.

Preliminaries

We now collect two properties of asymptotic notation that we will need in this note (we saw these in class today).

Reading Assignments

Sections 1.1, 1.2, 2.1, 2.2 and 2.4 in [KT]

Questions?

Rest of today's agenda

Analyzing the run time of the GS algo

Gale-Shapley Algorithm

Intially all men and women are free

While there exists a free woman who can propose

```
Let w be such a woman and m be the best man she has not proposed to

w proposes to m

If m is free

(m,w) get engaged

Else (m,w') are engaged

If m prefers w' to w

w remains free

Else

(m,w) get engaged and w' is free
```

Output the engaged pairs as the final output

Implementation Steps

How do we represent the input?

How do we find a free woman w?

How would w pick her best unproposed man m?

How do we know who m is engaged to?

How do we decide if m prefers w' to w?

Arrays and Linked Lists

