Lecture 17

CSE 331
Oct 7, 2022

Quiz 1-11:00-11:10am

Lecture starts at 11:15am

Quiz 1 timelines

Solutions: posted by today evening

Grading: finished by Saturday

Please do fill in the feedback

\square nete wan $-\frac{1}{6}$.

Feedback on CSE 331

Overall your feeling about CSE 331
7 responses

- Very Happy

Challenged and happy

- Challenged and meh
- Challenged and unhappyChallenged and very unhappyI'm bored!

Mid-terms next week

I still have more apples \odot

I still have apples in my office!

Following up on e248: I still have apples in my office (though they ave now two move days older but still very very nice to eat). So feel free to stop by my OH tomorrow at $12: 30 \mathrm{pm}$ and grab an apple!

```
office_hours
```


Rachael OH only on Mondays

Rachael's Tue 11am OH dropped for the rest of the semester

Apologies for this but starting from next week, Rachael will only have office hours on Monday. Le. she will no longer hold her Tue 11-11:50am office hours. However, that OH overlapped with James' OH so the OH coverage will not change and so I do not antiolpate this causing any lissues.

BTW since there was a comment on this in the feedback [e221], note that the TA during their in-person OH are also on zoom and you can talk with them there assuming there is no one present in-person (which given how sparsely attended OHis have been in general should not be an issue...)

```
office hours
```


Questions?

Runtime analysis of Greedy Algo.

Questions/Comments?

Algorithm implementation

Go through the intervals in order of their finish time

Check if $s[i]<f(1)$

In general, if jth interval is the last one chosen
Pick smallest $i>j$ such that $s[i] \geq f(j)$

The final algo

$O(n \log n)$ time sort intervals such that $f(i) \leq f(i+1)$

$\mathrm{O}(\mathrm{n})$ time build array s[1..n] s.t. $\mathrm{s}[\mathrm{i}]=$ start time for i

$$
\begin{aligned}
& \text { Add } 1 \text { to } A \text { and set } f=f(1) \\
& \text { For } i=2 \text {.. } n \\
& \qquad \begin{array}{l}
\text { If } s[i] \geq f \\
\text { Add } i \text { to } A \\
\text { Set } f=f(i)
\end{array}
\end{aligned}
$$

Return A* = A

Questions/Comments?

Reading Assignment

Sec 4.1 of [KT]

The "real" end of Semester blues

Write up a term paper

Party!

331 HW

The "real" end of Semester blues

Write up a term paper

Exam study

The algorithmic task

Write up a term paper

You have to do

ALL the tasks

Project

Friday
Saturday
Sunday
Monday
Tuesday

Scheduling to minimize lateness

Write up a term paper

One possible schedule

Minimizing Max Lateness

Minimizing Maximum Lateness

This page collects material from previous incamations of CSE 331 on scheduling to minimize maximum lateness.

Where does the textbook talk about this?
Section 4.2 in the teatbook has the lowdown on the probiem of scheoding to minimize maximum lateness.
Fall 2018 material
First lecture
Here is the lecture widece

Rest of today

Shortest Path Problem

Reading Assignment

Sec 2.5 of [KT]

Shortest Path problem

Input: Directed graph G=(V,E)
Edge lengths, I_{e} for e in E

"start" vertex s in V

Output: All shortest paths from s to all nodes in V

Naïve Algorithm

$\Omega(n!)$ time

Dijkstra's shortest path algorithm

