Lecture 22

CSE 331
Oct 24, 2022

Project deadlines coming up

Fri, Oct 28	Counting Inversions $\mathbf{D}^{F 21} \mathbf{D}^{F 19} \mathbf{D}^{F 18} \mathrm{D}^{F 17} \mathrm{x}^{2}$	[KT, Sec 5.3] (Project (Problem 1 Coding) in)
Mon, Oct 31	Multiplying large integers $\mathbf{D}^{F 21} \mathbf{D}^{F 19} \mathbf{D}^{\text {P18 }} \mathbf{D}^{F 17} \mathrm{x}^{2}$	[KT, Sec 5.5] (Project (Problem 1 Reflection) in)
		Reading Assignment: Unraveling the mystery behind the identity
Wed, Now 2	Closest Pair of Points $\mathbf{D}^{\text {P21 }} \boldsymbol{\square}^{819} \boldsymbol{D}^{-18} \boldsymbol{D}^{[17} \mathrm{x}^{2}$	[$\mathrm{KT}, \mathrm{Sec} 5.4$]
Fri, Nov 4		[KT, Sec 5.4] (Project (Problem 2 Coding) in)
Mon, Nov 7	Weighted interval Scheduling $\mathbf{D}^{F 21} \mathbf{D}^{F 19} \mathbf{D}^{F 17} \mathrm{x}^{2}$	[KT, Sec 6.1] (Project (Problem 2 Reflection) in)

Group formation instructions

Autolab group submission for CSE 331 Project

The lowdown on submitting your project (especially the coding and reflection) problems as a group on Autolab.

Follow instructions

The instruction below are for Coding Problem 1
You will have to repeat the instructions below for EACH coding AND reflection problem on project on Autolab (with the appropriate changes to the actual problemp)

Form your group on Autolab

Groups on Autolab will NOT be automatically created
You will have to form a group on Autolab by yourself (as a groupl. Aead on for indituctions on how to go about this.

Please be in touch w/ your group

Please respond to your project group mates

teen perr grevp menters.
 grop wares, I do not cart ibout the ditalh.

But ploase do respond beck in a firnely lankiont net doing so is you sot doing pour pert in a prop propect.

mina

1-on-1 meetings

Meetings to discuss CSE 331 performance

 Areqhe.

 44ber

Abstract


```
moluer frusy,
```


Guest lecture on Wed

One time amnesty for Al violation

E note e346 - A
 One time amnesty option

 stop followingB for whatever reason you did not follow the HW policies for any of homeworks $1-5$ (a.g. you looked at sources that yoou should not have, or colaborated in a group of sise >3 including yourself, atc), we're giving an option for one time amnest. What this means is you can withdraw ary queston(s) where you might have violated ary HW policy (and get a 0 for the comesponding question|s) wthout any academio integrity violation charges.

To aval of this cption, please emall Atri by Thursday 5pm letting him know which question(ef you would like to withdraw. You do NOT have to give any reason for the withdrawing tee questions.

This will be the only option during the semester: if you get caught violating HW polieies in HWb 1.5 after Th 5 pm (or in any fature HWa), then I will start academic integrity violation proceduee against you.
homeworkt homework2 homework3 homeworks homework5 grading

Questions/Comments?

Kruskal's Algorithm

Input: $G=(V, E), c_{e}>0$ for every e in E

$$
\mathrm{T}=\varnothing
$$

Sort edges in increasing order of their cost

Consider edges in sorted order

Joseph B. Kruskal

If an edge can be added to T without adding a cycle then add it to T

Cut Property Lemma for MSTs

Condition: S and $V \backslash S$ are non-empty

Cheapest crossing edge is in all MSTs

Assumption: All edge costs are distinct

Questions/Comments?

Today's agenda

Optimality of Kruskal's algorithm

Remove distinct edge weights assumption

Quick runtime analysis of Prim's+Kruskal's

Optimality of Kruskal's Algorithm

Input: $G=(V, E), c_{e}>0$ for every e in E
$T=\varnothing$
Sort edges increasing order of their cost
S is non-empty
$V \backslash S$ is non-empty
First crossing edge considered

Consider edges in sorted order
If an edge can be added to without adding a cycle chen add it to T

Is (V, T) a spanning tree?

No cycles by design

Just need to show that (V, T) is connected

Removing distinct cost assumption

Change all edge weights by very small amounts

MST for "perturbed" weights is the same as for original

Changes have to be small enough so that this holds

Questions/Comments?

Running time for Prim's algorithm

Similar to Dijkstra's algorithm

Input: $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{c}_{\mathrm{e}}>0$ for every e in E
$S=\{s\}, T=\varnothing$
While S is not the same as V
Among edges $e=(u, w)$ with u in S and w not in S, pick one with minimum cost
Add w to S , e to T

Running time for Kruskal's Algorithm

Can be implemented in O(m log n) time (Union-find DS)

Input: $G=(V, E), c_{e}>0$ for every e in E
$T=\varnothing$

Sort edges in increasing order of their cost

Consider edges in sorted order

Joseph B. Kruskal

If an edge can be added to T without adding a cycle then add it to T

Reading Assignment

Sec 4.5, 4.6 of [KT]

High Level view of the course

Data Structures

Correctness+Runtime Analysis

Trivia

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems
"Patch up" the solutions to the sub-problems for the final solution

Sorting

Given n numbers order them from smallest to largest

Works for any set of elements on which there is a total order

Insertion Sort

Input: $a_{1}, a_{2}, \ldots ., a_{n}$

Find $1 \leq j \leq i$ s.t. a_{i} lies between b_{j-1} and b_{j} Move b_{j} to b_{i-1} one cell "down"

Other $\mathrm{O}\left(\mathrm{n}^{2}\right)$ sorting algorithms

Selection Sort: In every round pick the min among remaining numbers

Bubble sort: The smallest number "bubbles" up

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems
"Patch up" the solutions to the sub-problems for the final solution

Mergesort Algorithm

Divide up the numbers in the middle

Sort each half recursively

Unless $\mathrm{n}=2$

Merge the two sorted halves into one sorted output

How fast can sorted arrays be merged?

Mergesort algorithm

Input: $a_{1}, a_{2}, \ldots, a_{n}$
Output: Numbers in sorted order

```
MergeSort( a, n )
    If }\textrm{n}=1\mathrm{ return the order }\mp@subsup{a}{1}{
    If }\textrm{n}=2\mathrm{ return the order min}(\mp@subsup{\textrm{a}}{1}{},\mp@subsup{a}{2}{});\operatorname{max}(\mp@subsup{\textrm{a}}{1}{},\mp@subsup{a}{2}{}
    aL}=\mp@subsup{a}{1,\ldots,}{,}\mp@subsup{a}{n/2}{
    ar}=\mp@subsup{a}{n/2+1,\ldots,}{},\mp@subsup{a}{n}{
    return MERGE ( MergeSort(aL, n/2), MergeSort(ar, n/2) )
```


An example run

MergeSort(a, n)
If $\mathrm{n}=1$ return the order a_{1}
If $\mathrm{n}=2$ return the order $\min \left(\mathrm{a}_{1}, \mathrm{a}_{2}\right) ; \max \left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)$
$a_{L}=a_{1}, \ldots, a_{n / 2}$
$a_{R}=a_{n / 2+1}, \ldots, a_{n}$
return MERGE (MergeSort($\left.a_{L}, n / 2\right)$, MergeSort $\left(a_{R}, n / 2\right)$)

Correctness

Input: $a_{1}, a_{2}, \ldots, a_{n}$
Output: Numbers in sorted order

Inductive step follows from correctness of MERGE

Runtime analysis on the board...

