
Lecture 22

CSE 331
Oct 24, 2022

Project deadlines coming up

Group formation instructions

Follow instructions EXACTLY as they are stated

Please be in touch w/ your group

1-on-1 meetings

Guest lecture on Wed

A. Erdem Sarıyüce

My 4pm
OH

canceled

Trevor
will run

late night
OH

One time amnesty for AI violation

Questions/Comments?

Kruskal’s Algorithm

Joseph B. Kruskal

Input: G=(V,E), ce> 0 for every e in E

T = Ø

Sort edges in increasing order of their cost

Consider edges in sorted order

If an edge can be added to T without adding a cycle then add it to T

Cut Property Lemma for MSTs

S V \ S

Cheapest crossing edge is in all MSTs

Condition: S and V\S are non-empty

Assumption: All edge costs are distinct

Questions/Comments?

Today’s agenda

Optimality of Kruskal’s algorithm

Remove distinct edge weights assumption

Quick runtime analysis of Prim’s+Kruskal’s

S V \ S

Optimality of Kruskal’s Algorithm

Input: G=(V,E), ce> 0 for every e in E

T = Ø

Sort edges in increasing order of their cost

Consider edges in sorted order

If an edge can be added to T without adding a cycle then add it to T

S
Nodes

connected to red
in (V,T)

S is non-empty

V\S is non-empty

First crossing edge considered

Is (V,T) a spanning tree?

No cycles by design

Just need to show that (V,T) is connected

S’ V \ S’

No edges here

G is
disconnected!

Removing distinct cost assumption

Change all edge weights by very small amounts

Make sure that all edge weights are distinct

MST for “perturbed” weights is the same as for original

Changes have to be small enough so that this holds

EXERCISE: Figure out how to change
costs

Questions/Comments?

Running time for Prim’s algorithm
Similar to Dijkstra’s algorithm

Input: G=(V,E), ce> 0 for every e in E

S = {s}, T = Ø

While S is not the same as V

Among edges e= (u,w) with u in S and w not in S, pick one with minimum cost

Add w to S, e to T

O(m log n)

Running time for Kruskal’s Algorithm

Joseph B. Kruskal

Input: G=(V,E), ce> 0 for every e in E

T = Ø

Sort edges in increasing order of their cost

Consider edges in sorted order

If an edge can be added to T without adding a cycle then add it to T

Can be verified in O(m+n) time

O(m2) time
overall

Can be implemented in O(m log n) time (Union-find DS)

Reading Assignment
Sec 4.5, 4.6 of [KT]

High Level view of the course
Problem Statement

Algorithm

Problem Definition

“Implementation”

Analysis Correctness+Runtime Analysis

Data Structures

Three general
techniques

Done with
greedy

Trivia

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

“Patch up” the solutions to the sub-problems for the final solution

Sorting

Given n numbers order them from smallest to largest

Works for any set of elements on which there is a total order

Insertion Sort
Input: a1, a2,…., an Make sure that all the

processed numbers
are sortedOutput: b1,b2,…,bn

b1= a1

for i =2 … n

Find 1 ≤ j ≤ i s.t. ai lies between bj-1 and bj

Move bj to bi-1 one cell “down”

bj=ai 4

3

2

1

a b

42

3

4

3

4

1

2

3

4

O(log n)

O(n)

O(n2) overall

Other O(n2) sorting algorithms

Selection Sort: In every round pick the min among remaining numbers

Bubble sort: The smallest number “bubbles” up

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

“Patch up” the solutions to the sub-problems for the final solution

Mergesort Algorithm

Divide up the numbers in the middle

Sort each half recursively

Merge the two sorted halves into one sorted output

Unless n=2

How fast can sorted arrays be merged?

Group talk time

Mergesort algorithm
Input: a1, a2, …, an Output: Numbers in sorted order

MergeSort(a, n)

If n = 2 return the order min(a1,a2); max(a1,a2)

aL = a1,…, an/2

aR = an/2+1,…, an

return MERGE (MergeSort(aL, n/2), MergeSort(aR, n/2))

If n = 1 return the order a1

An example run

MergeSort(a, n)

If n = 2 return the order min(a1,a2); max(a1,a2)
aL = a1,…, an/2

aR = an/2+1,…, an

return MERGE (MergeSort(aL, n/2), MergeSort(aR, n/2))

151 100 19 2 8 34

511 19 100

1 19 51 100

2 8 43

2 3 4 8

1 2 3 4 8 19 51 100

If n = 1 return the order a1

Correctness
Input: a1, a2, …, an Output: Numbers in sorted order

MergeSort(a, n)

If n = 2 return the order min(a1,a2); max(a1,a2)

aL = a1,…, an/2

aR = an/2+1,…, an

return MERGE (MergeSort(aL, n/2), MergeSort(aR, n/2))

By
induction

on n

Inductive step follows from correctness of MERGE

If n = 1 return the order a1

Runtime analysis on the board…

