Lecture 26

CSE 331
Nov 2, 2022

Coding P2 due Friday

Fri, Now 4		[KT, Sec 5.4] (Project (Problem 2 Coding) iny
Mon, Now 7	Weighted Interval Scheduling $\mathrm{P}^{\prime 21} \mathrm{CP}^{\prime 71} \mathrm{CP}^{17} \mathrm{x}^{4}$	[KT, Sec 6.1] (Project (Problem 2 Derlection) in)
Tue, Nov 8		(HW 6 out)
Wed, Nov9 9	Recursive algorithm for weighted interval scheduling problem $\mathrm{D}^{2 / 21} \mathrm{D}^{171} \mathrm{D}^{17} \mathrm{x}^{4}$	[KT, Sec 6.1]
Fr, Nov 11	Subset sum problem $\mathbf{D}^{221} \mathrm{C}^{2 / 1} \mathrm{C}^{1 / 1} \mathrm{D}^{2 / 17} \mathrm{x}^{\prime}$	[KT, Sec 6.1, 6.2, 6.4]
Mon, Nor 14	Dynamic program for subset sum $\mathrm{D}^{2 / 1} \mathrm{D}^{2919} \mathrm{D}^{-11} \mathrm{D}^{[17} x^{1}$	[KT, Sec 6.4]
Tue, Nov 15		(HW 7 out, HW 5 inf
Wed, Now 16	Shortest path problem [D $\mathrm{D}^{221} \mathrm{D}^{871} \mathrm{D}^{P 11} \mathrm{D}^{217} x^{2}$	[KT , Soc 6.8]
Fri, Nov 18		[KT, Sec 6.8]
Mon, Now 21	The P ve. NP problem $P^{2 / 21} \mathrm{P}^{211}$	[KT, Sece 8.1]
Wed, Now 23	No class	Fall Recess
Fri, Nov 25	No class	Fall Recess
Mon, Nor 28	More on reductions $\mathrm{D}^{221} \mathrm{D}^{813}$	[KT, Sec 8.1]
Tue, Nov 29		(RW S out, HW 7 in)
Wod, Now 30	The SAT problem $\mathbf{D}^{P 21} \mathrm{D}^{[11}$	[KT, Sec 8.2]
Fri, Dec 2	NP-Completeress $\mathrm{C}^{2 / 1} \mathrm{D}^{17}$	[KT, Sec. 8.3, 8.4] (Project (Probiem 3 Coding) in)
Mon, Dec 5	*-coloring problem $\mathrm{Cl}^{\prime 21} \mathrm{E}^{\prime \prime}$	(NT, Sec B.7) (Oulz 2) (Propect (Problem 3 Deflectisen) ing

Group formation instructions

Autolab group submission for CSE 331 Project

The lowdown on submitting your project (especially the coding and reflection) problems as a group on Autolab.

Follow instructions

The instruction below are for Coding Problem 1
You will have to repeat the instructions below for EACH coding AND reflection problem on project on Autolab (with the appropriate changes to the actual problemp)

Form your group on Autolab

Groups on Autolab will NOT be automatically created
You will have to form a group on Autolab by yourself (as a groupl. Aead on for indituctions on how to go about this.

Make sure you are in your group

Coding P1 due today

A perite meninder that fie fint voding probion is due by Ilisllon tonight

 never lo be included.

Tlat poed nolte

Friday OH shortened to 30 mins

My Friday Office hours will be for 30 minutes

So sonry to do this but my Friday OH for Nov 4 will be for 30 mins from $12 \mathbf{4 5 - 1 : 1 5 \mathrm { pm } \text { . This change is only for this week and the Wed Offs times will not change. }}$

office_hours

Questions/Comments?

Multiplying two numbers

Given two numbers a and b in binary

$$
a=\left(a_{n-1}, . ., a_{0}\right) \text { and } b=\left(b_{n-1}, \ldots, b_{0}\right)
$$

Compute $\mathrm{c}=\mathrm{ax} \mathrm{b}$

Elementary
 school
 algorithm is
 $O\left(n^{2}\right)$

The current algorithm scheme

$$
\begin{aligned}
& T(n) \leq 4 T(n / 2)+c n \\
& T(1) \leq c
\end{aligned}
$$

The key identity

$$
a^{1} b^{0}+a^{0} b^{1}=\left(a^{1}+a^{0}\right)\left(b^{1}+b^{0}\right)-a^{1} b^{1}-a^{0} b^{0}
$$

Wait, how do you think of that?

De-Mystifying the Integer Multiplication Algorithm

In class, we saw an $\boldsymbol{O}\left(n^{\log _{2} 3}\right)$ time algorithm to mutiply two n bit numbers that used an identity that seemed to be plucked out of thin air. In this note, we will try and de-mystity how one might come about thinking of this identity in the first place.

The setup

We first recall the probiem that we are irying to solve:

Multiplying Integers
Owen bwo n bll numbers $a=\left(a_{n-1}+\ldots, a_{0}\right)$ and $b=\left(b_{n-1}, \ldots, b_{0}\right)$, ouput ther produet $c=a \times b$.

Next, recall the following notation that we utect

$$
\begin{aligned}
& a^{a}=\left(a_{[1]}+\cdots, a_{0}\right) . \\
& a^{4}=\left(a_{n-1}, \ldots, a_{[+1}\right) \text {. }
\end{aligned}
$$

The final algorithm

Input: $\mathrm{a}=\left(\mathrm{a}_{\mathrm{n}-1}, \ldots, \mathrm{a}_{0}\right)$ and $\mathrm{b}=\left(\mathrm{b}_{\mathrm{n}-1}, \ldots, \mathrm{~b}_{0}\right)$
Mult (a, b)

$$
\begin{aligned}
& \text { If } n=1 \text { return } a_{0} b_{0} \\
& a^{1}=a_{n-1}, \ldots, a_{[n / 2]} \text { and } a^{0}=a_{[n / 2]-1}, \ldots, a_{0}
\end{aligned}
$$

Compute b^{1} and b^{0} from b
$x=a^{1}+a^{0}$ and $y=b^{1}+b^{0}$
Let $p=\operatorname{Mult}(x, y), D=\operatorname{Mult}\left(a^{1}, b^{1}\right), E=\operatorname{Mult}\left(a^{0}, b^{0}\right)$
$F=p-D-E$
return $D \cdot 2^{2[n / 2]}+F \cdot 2^{[n / 2]}+E$
$T(1) \leq c$
$\mathrm{T}(\mathrm{n}) \leq 3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}$
$\mathrm{O}\left(\mathrm{n}^{\left.\left.\log _{2}{ }^{3}\right)=\mathrm{O}\left(\mathrm{n}^{1.59}\right), ~\right) ~(1)}\right.$
run time

All green operations are $\mathrm{O}(\mathrm{n})$ time
$a \cdot b=a^{1} b^{1} \cdot 2^{2[n / 2]}+\left(\left(a^{1}+a^{0}\right)\left(b^{1}+b^{0}\right)-a^{1} b^{1}-a^{0} b^{0}\right) \cdot 2^{[n / 2]}+a^{0} b^{0}$

Questions/Comments?

Closest pairs of points

Input: $n 2-D$ points $P=\left\{p_{1}, \ldots, p_{n}\right\} ; p_{i}=\left(x_{i}, y_{i}\right)$

$$
\mathrm{d}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)=\left(\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right)^{2}+\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{j}}\right)^{2}\right)^{1 / 2}
$$

Output: Points p and q that are closest

Group Talk time

$\mathrm{O}\left(\mathrm{n}^{2}\right)$ time algorithm?

1-D problem in time $O(n \log n)$?

Sorting to rescue in 2-D?

Pick pairs of points closest in x co-ordinate

Pick pairs of points closest in y co-ordinate

Choose the better of the two

A property of Euclidean distance

$$
d\left(p_{i}, p_{j}\right)=\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)^{1 / 2}
$$

The distance is larger than the \mathbf{x} or \mathbf{y}-coord difference

Questions/Comments?

Problem definition on the board...

Rest of Today's agenda

Divide and Conquer based algorithm

Dividing up P

First $\mathrm{n} / 2$ points according to the x -coord

Recursively find closest pairs

An aside: maintain sorted lists

P_{x} and P_{y} are P sorted by x-coord and y-coord
$Q_{x}, Q_{y}, R_{x}, R_{y}$ can be computed from P_{x} and P_{y} in $O(n)$ time

An easy case

Life is not so easy though

