Lecture 27

CSE 331 Nov 4, 2022

Coding P2 due TODAY

Fri, Nov 4	Kickass Property Lemma D ^{F21} D ^{F19} D ^{F18} D ^{F17} x ²	[KT, Sec 5.4] (Project (Problem 2 Coding) in)	
Mon, Nov 7	Weighted Interval Scheduling 121 1719 1717 x2	[KT, Sec 6.1] (Project (Problem 2 Reflection) In)	
Tue, Nov 8		(HW 6 out)	
Wed, Nov 9	Recursive algorithm for weighted interval scheduling problem 2 ^{f21} ^{f19} ^{f17} x ²	[KT, Sec 6.1]	
Fri, Nov 11	Subset sum problem P ^{F21} P ^{F18} P ^{F18} P ^{F17} x ³	[KT, Sec 6.1, 6.2, 6.4]	
Mon, Nov 14	Dynamic program for subset sum P ²¹ P ¹⁰ P ¹⁰ P ¹¹ P ¹¹⁷ x ¹	[KT, Sec 6.4]	
Tue, Nov 15		(HW 7 out, HW 6 in)	
Wed, Nov 16	Shortest path problem P ^{F21} P ^{F19} P ^{F18} P ^{F17} x ²	[KT, Sec 6.8]	
Fri, Nov 18	Beilman-Ford algorithm 2 ^{F21} 2 ^{F19} 2 ^{F18} 2 ^{F17} x ²	[KT, Sec 6.8]	
Mon, Nov 21	The P vs. NP problem P ²¹ P ⁵¹⁹	[KT, Sec 8.1]	
Wed, Nov 23	No class	Fall Recess	
Fri, Nov 25	No class	Fall Recess	
Mon, Nov 28	More on reductions P ¹²¹ P ¹³³	[KT, Sec 8.1]	
Tue, Nov 29		(HW 8 out, HW 7 In)	
Wed, Nov 30	The SAT problem P ^{F21} P ^{F19}	[KT, Sec 8.2]	
Fri, Dec 2	NP-Completeness D ^{F21} D ^{F19}	[KT, Sec. 8.3, 8.4] (Project (Problem 3 Coding) in)	
Mon, Dec 5	k-coloring problem ^{f21} ^{f19}	(KT, Sec 8.7) (Quiz 2) (Project (Problem 3 Inflection) in)	

Group formation instructions

Autolab group submission for CSE 331 Project

The lowdown on submitting your project (especially the coding and reflection) problems as a group on Autolab.

Follow instructions **EXACTLY** as they are stated

The instruction below are for Coding Problem 1

You will have to repeat the instructions below for EACH coding AND reflection problem on project on Autolab (with the appropriate changes to the actual problem).

Form your group on Autolab

Groups on Autolab will NOT be automatically created

You will have to form a group on Autolab by yourself (as a group). Read on for instructions on how to go about this.

Make sure you are in your group

note #366 💿 🚖 🔒 -	stop following 2 views			
Coding P1 due today	Actions *			
Finally, make sure that you are officially included in your group on Autolab for the coding problem 1 before your group submits its code. If you are not included in the group on Autolab, you will get a ZERO on coding problem 1.				
Please make sure that you verify that you see a submission for yourself on Autolab. It is your PERSONAL RESPONSIBILITY to make sure that this is the case. If your proup forgets to do this is it your responsibility to reminder them that you need to be included.				
If your group has already submitted without you, make sure you are included in the group on Autoiab and then someone from your group should re-submit.				
Edit good note 0	claimed 2 minutes ago by Ahl Pluchts			

Coding problem grading

🗖 note 0391 💿 🛧 🔒 *

Looks like few of your are not interpreting how the grading for problems 2-5 works (@383).

Please note that if your revenue exactly matches the revenue of the optimal solution for problem 1 you should be getting level 0. Note that the ratio that determines your level is

(your solution's revenue - revenue of optimal Solution for Problem 1)

(our revenue - revenue from optimal Solution for Problem 1)

If you revenue matches that of optimal solution for problem 1, your case the numerator is 0 and hence your level will be 0.

project

good note 1

Updated 12 hours ago by Atri Rudra

OH today shortened to 30 mins

Have fun @ UB Hacking!

Questions/Comments?

Closest pairs of points

Input: n 2-D points $P = \{p_1,...,p_n\}; p_i = (x_i, y_i)$

 $d(p_i, p_j) = ((x_i - x_j)^2 + (y_i - y_j)^2)^{1/2}$

Output: Points p and q that are closest

Dividing up P R Q

First n/2 points according to the x-coord

Recursively find closest pairs

An aside: maintain sorted lists

 P_x and P_y are P sorted by x-coord and y-coord

 Q_x , Q_y , R_x , R_y can be computed from P_x and P_y in O(n) time

Life is not so easy though

Questions/Comments?

Euclid to the rescue (?)

The distance is larger than the **x** or **y**-coord difference

All we have to do now

The algorithm so far...

 $O(n \log n) + T(n)$

Input: n 2-D points P = { $p_1,,p_n$ }; $p_i = (x_i, y_i)$		
Sort P to get P_x and P_y		
Closest-Pair (P _x , P _y)	O(n log n)	T(< 4) = c
If n < 4 then find closest point by brute-force		T(n) = 2T(n/2) + cn
Q is first half of P _x and R is the rest	O(n)	
Compute Q_x , Q_y , R_x and R_y	O(n)	
$(q_0,q_1) = Closest-Pair (Q_x, Q_y)$		O(n log n) overall
$(r_0, r_1) = Closest-Pair (R_x, R_y)$		
$δ = min (d(q_0, q_1), d(r_0, r_1))$	O(n)	
S = points (x,y) in P s.t. $ x - x^* < \delta$	O(n)	
return Closest-in-box (S, (q ₀ ,q ₁), (r ₀ ,r ₁))	Assume c	an be done in O(n)

Rest of today's agenda

Implement Closest-in-box in O(n) time