Lecture 27

CSE 331
Nov 4, 2022

Coding P2 due TODAY

Fri, Nov 4		[KT, Sec 5.4] (Project (Problem 2 Coding) iny
Mon, Now 7	Weighted Interval Scheduling $\mathrm{P}^{2 / 1} \mathrm{P}^{\prime 71} \mathrm{C}^{17} \mathrm{x}^{2}$	[KT, Sec 6.1] (Project (Problem 2 Derlection) in)
Tuen, Now 8		(HW 6 out)
Wed, Now 9	Recursive algorithm for weighted interval scheduling problem $\mathrm{B}^{21} \mathrm{C}^{17} \mathrm{c}^{17} \mathrm{x}^{4}$	[KT, Sec 6.1]
Fri, Nov 11	Subset sum problem $\mathrm{D}^{2 / 21} \mathrm{C}^{7 / 1} \mathrm{C}^{181} \mathrm{P}^{2 / 17} \mathrm{x}^{2}$	[KT , Sec 6.1, 6.2, 6.4]
Mon, Nov 14		[KT, Sec 6.4]
Tue, Nov 15		(HW 7 out, HW 5 inf
Wod, Nov 16	Shortest path problem $\mathrm{D}^{221} \mathrm{D}^{872} \mathrm{C}^{811} \mathrm{D}^{817} \mathrm{x}^{2}$	[KT, Sec 6.8]
Fri, Nov 18		[KT, Sec 6.8]
Mon, Nor 21	The P ve. NP problem $\mathrm{P}^{2 / 1} \mathrm{P}^{211}$	[KT, Sec 8.1]
Wed, Now 23	No class	Fall Recess
Fri, Nov 25	No class	Fall Recess
Mon, Nov 28	More on reductions $\mathrm{P}^{P 21} \mathrm{D}^{813}$	[KT, Sec 8.1]
Tue, Nov 29		(RW B out, HW 7 in)
Wed, Noy 30	The SAT problem $\mathrm{D}^{221} \mathrm{D}^{213}$	[KT , Sec 8.2]
Fr, Dec 2	NP-Completeress $\mathrm{C}^{2 / 1} \mathrm{D}^{17}$	[KT, Sec. 8.3, 8.4] (Project (Probiem 3 Coding) in)
Mon, Dec 5	k-coloring problem $\mathbf{C}^{2 / 21} \mathrm{C}^{711}$	(KT, Sec B.7] (Oulz 2) (Project (Problem 3 Deflectisn) ing)

Group formation instructions

Autolab group submission for CSE 331 Project

The lowdown on submitting your project (especially the coding and reflection) problems as a group on Autolab.

Follow instructions

The instruction below are for Coding Problem 1
You will have to repeat the instructions below for EACH coding AND reflection problem on project on Autolab (with the appropriate changes to the actual problemp)

Form your group on Autolab

Groups on Autolab will NOT be automatically created
You will have to form a group on Autolab by yourself (as a groupl. Aead on for indituctions on how to go about this.

Make sure you are in your group

Coding P1 due today

A perite meninder that fie fint voding probion is due by Ilisllon tonight

 never lo be included.

Tlat poed nolte

Coding problem grading

Please make sure you read the coding grading rubric correctly

Looks the few of your are not interperting how the grading for problems 2.5 morks (esa3).

Phease note that it your sevenue exactly matches the revenue of the optirnal solution for problem 1 you should be getting level 0 . Note that the ratio that determirnes your level is
(your solution's revenue - revenue of optimal Solution for Problem 1)
(four revenue - avevenue from optimal Solution for Problem 1)

If you revennue matches that of optimal sclution for problem 1 , your case the furnerator is 0 and hence your level will be 0.

project

OH today shortened to 30 mins

So sorry to do this but my Friday OH for Nov 4 will be for 30 mins from $12: 45-1: 15 \mathrm{pm}$. This change is only for this week and the Wed Ofts times will not change.

office_hours

Have fun @ UB Hacking!

UB Hatking 2022

Questions/Comments?

Closest pairs of points

Input: $n 2-D$ points $P=\left\{p_{1}, \ldots, p_{n}\right\} ; p_{i}=\left(x_{i}, y_{i}\right)$

$$
\mathrm{d}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)=\left(\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right)^{2}+\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{j}}\right)^{2}\right)^{1 / 2}
$$

Output: Points p and q that are closest

Dividing up P

First $\mathrm{n} / 2$ points according to the x -coord

Recursively find closest pairs

An aside: maintain sorted lists

P_{x} and P_{y} are P sorted by x-coord and y-coord
$Q_{x}, Q_{y}, R_{x}, R_{y}$ can be computed from P_{x} and P_{y} in $O(n)$ time

An easy case

Life is not so easy though

Questions/Comments?

Euclid to the rescue (?)

$$
d\left(p_{i}, p_{j}\right)=\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)^{1 / 2}
$$

The distance is larger than the \mathbf{x} or \mathbf{y}-coord difference

Life is not so easy though

$\delta=\min$ (blue, green)

All we have to do now

$\delta=\min$ (blue, green)

The algorithm so far...

Input: n 2-D points $P=\left\{p_{1}, \ldots, p_{n}\right\} ; p_{i}=\left(x_{i}, y_{i}\right)$

$$
O(n \log n)+T(n)
$$

Sort P to get P_{x} and P_{y}
Closest-Pair (P_{x}, P_{y})
On $\log \mathrm{n})$

$$
T(<4)=c
$$

If $\mathrm{n}<4$ then find closest point by brute-force

$$
T(n)=2 T(n / 2)+c n
$$ Q is first half of P_{x} and R is the rest

$\mathrm{O}(\mathrm{n})$
Compute $\mathrm{Q}_{x}, \mathrm{Q}_{y}, \mathrm{R}_{x}$ and R_{y}
On)
$O(n \log n)$ overall
$\left(q_{0}, q_{1}\right)=$ Closest-Pair $\left(Q_{x}, Q_{y}\right)$
$\left(r_{0}, r_{1}\right)=$ Closest-Pair $\left(R_{x}, R_{y}\right)$
$\mathrm{O}(\mathrm{n})$
$\delta=\min \left(d\left(q_{0}, q_{1}\right), d\left(r_{0}, r_{1}\right)\right)$
$\mathrm{O}(\mathrm{n})$
return Closest-in-box $\left(S,\left(q_{0}, q_{1}\right),\left(r_{0}, r_{1}\right)\right)$

Rest of today's agenda

Implement Closest-in-box in O(n) time

