Lecture 32

CSE 331

Nov 16, 2022

HW 7 out

Homework 7

Due by 11:30pm, Tuesday, November 29, 2022.

Make sure you follow all the homework policies.

All submissions should be done via Autolab.

Question 1 (Ex 1 in Chap 6) [50 points]

The Problem

Exercise 1 in Chapter 6. The part (a) and (b) for this problem correspond to the part ((a)+(b)) and part (c) in Exercise 1 in Chapter 6 in the textbook (respectively).

Sample Input/Output

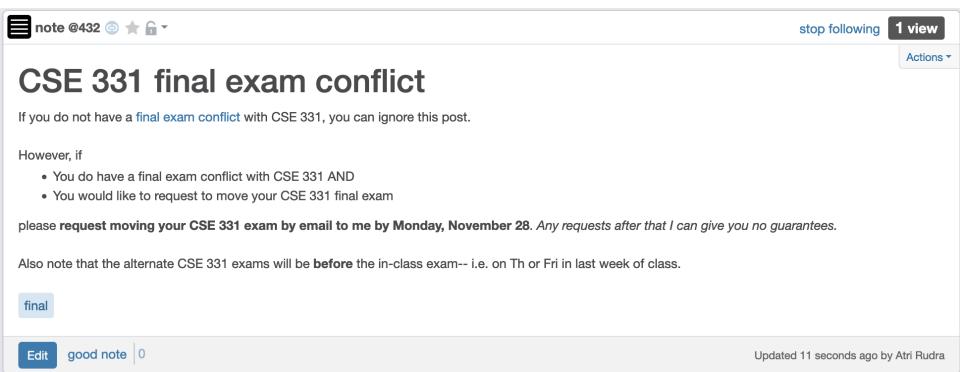
See the textbook for a sample input and the corresponding optimal output solution.

! Note on Timeouts

For this problem the total timeout for Autolab is 480s, which is higher the usual timeout of 180s in the earlier homeworks. So if your code takes a long time to run it'll take longer for you to get feedback on Autolab. Please start early to avoid getting deadlocked out before the submission deadline.

Also for this problem, C++ and Java are way faster. The 480s timeout was chosen to accommodate the fact that Python is much slower than these two languages.

CSE 331 final exam conflict



Subset sum problem

Input: n integers $w_1, w_2, ..., w_n$

bound W

Output: subset S of [n] such that

(1) sum of w_i for all i in S is at most W

(2) w(S) is maximized

Recursive formula

```
OPT(j, B) = max value out of w_1,...,w_i with bound B
If w_i > B
   OPT(j, B) = OPT(j-1, B)
 else
   OPT(j, B) = max \{ OPT(j-1, B), w_i + OPT(j-1, B-w_i) \}
```

Questions?

Algo run on the board...

Recursive formula

 $OPT(j, B) = max value out of w_1,...,w_j with bound B$

If
$$w_j > B$$

$$OPT(j, B) = OPT(j-1, B)$$

$$OPT(j, B) = max \{ OPT(j-1, B), w_j + OPT(j-1, B-w_j) \}$$

Knapsack problem

Input: n patege(νω₁,νν₁,),νν₂, , (ν,γ,γ₁),

bound W

Output: subset S of [n] such that

(1) sum of w_i for all i in S is at most W

(2) w((S)) is maximized

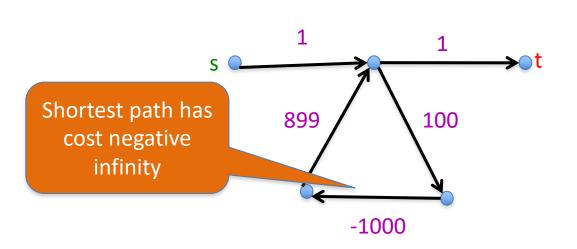
Questions?

Shortest Path Problem

Input: (Directed) Graph G=(V,E) and for every edge e has a cost c_e (can be <0)

t in V

Output: Shortest path from every s to t



Assume that G has no negative cycle

When to use Dynamic Programming

There are polynomially many sub-problems

Richard Bellman

Optimal solution can be computed from solutions to sub-problems

There is an ordering among sub-problem that allows for iterative solution

Rest of today's agenda

Bellman-Ford algorithm