#### Lecture 6

CSE 331 Sep 12, 2022

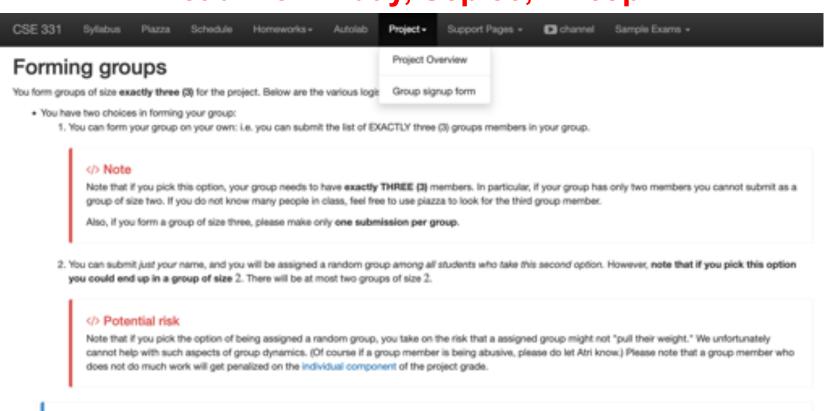
## 2<sup>nd</sup> T/F poll up



#### We're not mind readers



## If you need it, ask for help




## Make sure you can run HW0 code



#### Register your project groups

Deadline: Friday, Sep 30, 11:59pm

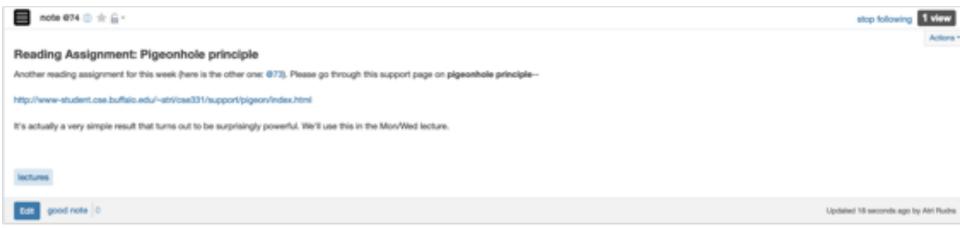


You need to fill in the form for group composition by 11:59pm on Friday, September 30.

Submitting your group composition

the same the same to be form for group composition by the deadline, then you get a zero for the entire project.

Use this Google form I to submit your group composition (the form will allow you to pick one of the two options above).


## HW 1 gets released this Tue

| Mon, Sep 12 | Gale Shapley algorithm (2)**** (2)**** (2)********************                                                        | [KT, Sec 1.1]  Reading Assignment: Pigeomole principle  Reading Assignment: Asymptotic notation care package                                                  |
|-------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tue, Sep 13 |                                                                                                                       | (HW 1 out)                                                                                                                                                    |
| Wed, Sep 14 | Gale Shapley algorithm outputs a stable matching (2) (2) (2) (2) (3) (4)                                              | [KT, Sec 1.1] Reading Assignment: Proof details of GS termination                                                                                             |
| Fri, Sep 16 | Efficient algorithms and asymptotic analysis (2) (2) (2) (2) (2) (2) (2)                                              | [KT, Sec 1.1] Reading Assignment: Worst-case runtime analysis notes<br>Reading Assignment: [KT, Sec 1.1, 2.1, 2.2, 2.4]                                       |
| Mon, Sep 19 | Runtime Analysis of Gale-Shapley algorithm                                                                            | (KT, Sec 2.3)                                                                                                                                                 |
| Tue, Sep 20 |                                                                                                                       | (HW 2 out, HW 1 in)                                                                                                                                           |
| Wed, Sep 21 | Graph Basics C3 <sup>221</sup> C3 <sup>232</sup> C3 <sup>233</sup> C3 <sup>234</sup> C3 <sup>237</sup> × <sup>1</sup> | [KT, Sec 2.3, 3.1]                                                                                                                                            |
| Fri, Sep 23 | Computing Connected Component (2) (2) (2) (2) (2) (2) (2)                                                             | [KT, Sec 3.2]  Aleading Assignment: Care package on trees  Aleading Assignment: BFS by examples                                                               |
| Mon, Sep 26 | Explore Algorithm (2 <sup>11</sup> (2 <sup>11</sup> (2 <sup>11</sup> (2 <sup>11</sup> x <sup>1</sup>                  | [KT, Sec 3.2]                                                                                                                                                 |
| Tue, Sep 27 |                                                                                                                       | (HW 3 out, HW 2 in)                                                                                                                                           |
| Wed, Sep 28 | Runtime Analysis of BFS algorithm □ 121 □ 110 □ 1111 □ 1111 x2                                                        | (KT, Sec 3.3)                                                                                                                                                 |
| Fri, Sep 30 | More graph stuff (3 <sup>(1)</sup> (3 <sup>(1)</sup> (3 <sup>(1)</sup> (3 <sup>(1)</sup> x <sup>1</sup>               | (KT, Sec 3.3, 3.6) (Project Team Composition Due)  Reading Assignment: (KT, Sec 3.3, 3.4, 3.5, 3.6)  Reading Assignment: Care package on topological ordering |
| Mon, Oct 3  | Interval Scheduling Problem (271) (271) (271) (271) (271)                                                             | [KT, Sec 4.1]                                                                                                                                                 |
| 4           |                                                                                                                       |                                                                                                                                                               |

## Reading Assignment - I



## Reading Assignment - II



# Questions/Comments?



## Stable Marriage problem

Set of men M and women W

Preferences (ranking of potential spouses)

Matching (no polyandry/gamy in M X W)

Perfect Matching (everyone gets married)

**Instablity** 

**Input:** M and W with preferences **Output:** Stable Matching

Stable matching = perfect matching+ no instablity

#### **Two Questions**

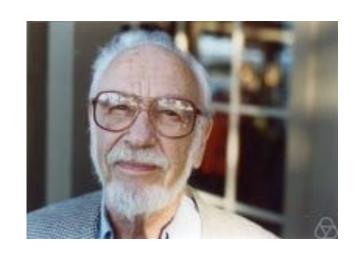
Does a stable marriage always exist?

If one exists, how quickly can we compute one?

## The naïve algorithm

Incremental algorithm to produce all n! prefect matchings?

Go through all possible perfect matchings S


If S is a stable matching

then Stop



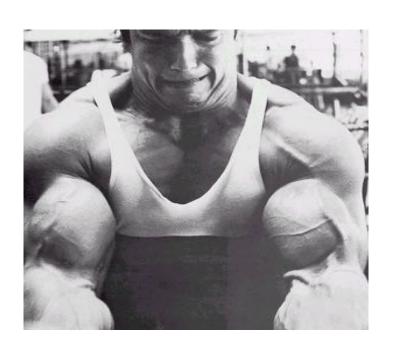
Else move to the next perfect matching

## Gale-Shapley Algorithm



David Gale




**Lloyd Shapley** 

O(n²) algorithm

## Moral of the story...







# Questions/Comments?



## Rest of today's agenda

Finish off GS algorithm

Run of GS algorithm on an instance

Prove correctness of the GS algorithm

#### Back to the board...



## Gale-Shapley Algorithm

Intially all men and women are free

While there exists a free woman who can propose

```
Let w be such a woman and m be the best man she has not proposed to
   w proposes to m
   If m is free
        (m,w) get engaged
   Else (m,w') are engaged
        If m prefers w' to w
              w remains free
        Else
              (m,w) get engaged and w' is free
```

Output the engaged pairs as the final output

#### **Preferences**













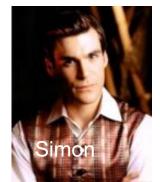


















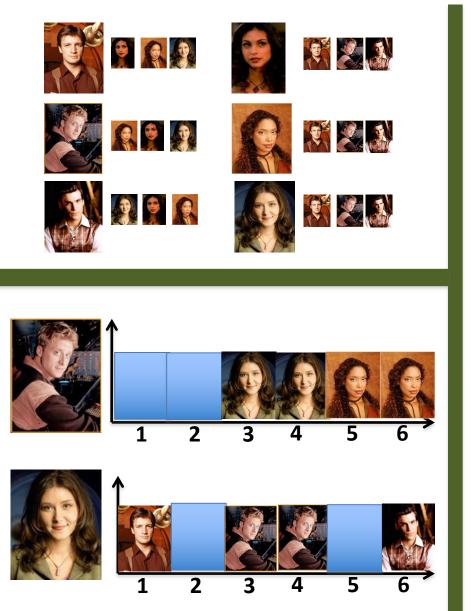


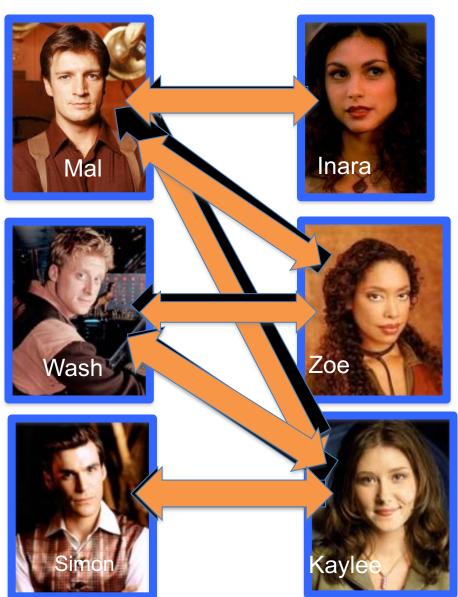













## GS algorithm: Firefly Edition

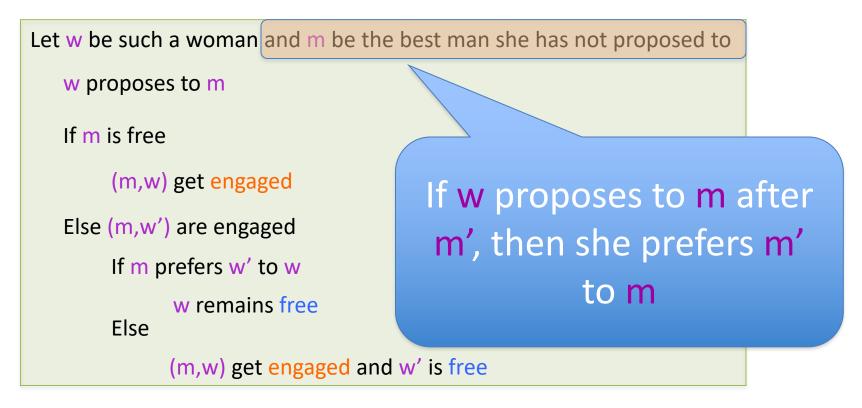




#### Observation 1

Intially all men and women are free

While there exists a free woman who can propose




Output the engaged pairs as the final output

#### Observation 2

Intially all men and women are free

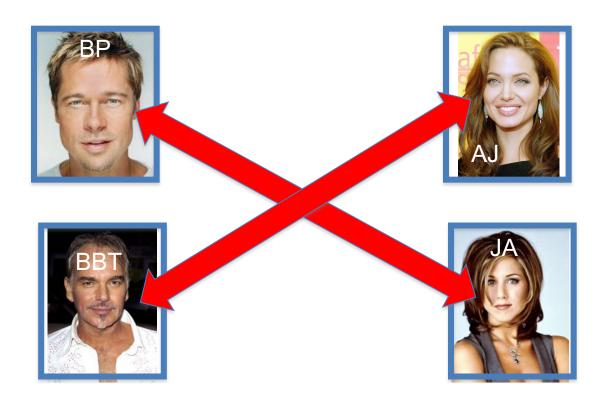
While there exists a free woman who can propose



Output the set S of engaged pairs as the final output

# Questions/Comments?




## Why bother proving correctness?

Consider a variant where any free man or free woman can propose

Is this variant any different? Can you prove it?

# GS' does not output a stable marriage



