Lecture 10

CSE 331
Sep 20, 2023

Project groups due in <2 weeks Deadline: Friday, Sep 29, 11:59pm

CSE 331
Syllabus
Piazza Schedule
Homeworks
Autolab
Project v Support Pages v
D channel
Sample Exams v

Forming groups

You form groups of size exactly three (3) for the project. Below are the various logis
Project Overview

- You have two choices in forming your group:

1. You can form your group on your own: i.e. you can submit the list of EXACTLY three (3) groups members in your group.

</> Note

Note that if you pick this option, your group needs to have exactly THREE (3) members. In particular, if your group has only two members you cannot submit as a group of size two. If you do not know many people in class, feel free to use piazza to look for the third group member.
Also, if you form a group of size three, please make only one submission per group.
2. You can submit just your name, and you will be assigned a random group among all students who take this second option. However, note that if you pick this option you could end up in a group of size 2 . There will be at most two groups of size 2 .

</> Potential risk

Note that if you pick the option of being assigned a random group, you take on the risk that a assigned group might not "pull their weight." We unfortunately cannot help with such aspects of group dynamics. (Of course if a group member is being abusive, please do let Atri know.) Please note that a group member who does not do much work will get penalized on the individual component of the project grade.

Submitting your group composition
Use this Google form [] to submit your group composition (the form will allow you to pick one of the two options above).

- You need to fill in the form for group composition by 11:59pm on Friday, September 30.

Confirmation of form submission

Confirmation of project group signing

As I mentioned in class today, here's the deal for confirmation of your submission of the group formation form:

- If you submit the form by this Friday, I will send an email confirmation over the weekend
- If you submit after Friday (but obviously before the actual deadline), then I will send an email confirmation after the deadline is done.

If you need it, ask for help

Piazza response policy

Piazza Response policy

Please note the following rules regarding response time to student questions on Piazza:

1. Any question posted between Friday 5pm and Monday 9am might not get an answer from CSE 331 staff before Monday 9am.
2. On weekdays, we will aim to respond to student question within four hours unless the question is posted between 7pm and 9am, in which case we might only be able to respond after 9am.

Please note that the above does not means that we will never answer questions posted in the evening/night times as mentioned above-- it's just that we might not always be able to respond within four hours. Based on previous years, I do expect there to be reasonable response time in the evening times as well-- it's just that OUR response times might be more variable.

"One click" rule

One-click rule

A gentle reminder that the one click rule is in place for allowed source. l.e. you should not be clicking on links from webpages that are allowed sources.

logistics

If you did an Al violation on HW 1

You can still withdraw it with no penalty by 11:59pm tonight

Withdrawing a submission for academic integrity violation

Sometime mistakes can happen so you have the option of withdrawing any of your Homework submission with $\mathbf{2 4}$ HOURS of the assignment deadline. You can do this by sending Atri an email, e.g. by using the following template (thanks to Oliver Kennedy [J] for providing us the template):

```
Email template for withdrawing submission
Dear Dr. Rudra/Atri,
I wish to inform you that I have violated CSE 331 policies on my submission for Question X on Homeworks/Assignment N. I wish to withdraw my submission to preserve
academic integrity.
J.Q. Student
Person #12345678
UBIT: jqstuden
Sincerely, J
```


Homework 2 out!

Homework 2

Due by 11:30pm, Tuesday, September 26, 2023.
Make sure you follow all the homework policies.
All submissions should be done via Autolab.

Sample Problem

The Problem

This problem is just to get you thinking about asymptotic analysis and input sizes.
An integer $n \geq 2$ is a prime, if the only divisors it has is 1 and n. Consider the following algorithm to check if the given number n is prime or not:
For every integer $2 \leq i \leq \sqrt{n}$, check if i divides n. If so declare n to be not a prime. If no such i exists, declare n to be a prime.
What is the function $f(n)$ such that the algorithm above has running time $\Theta(f(n))$? Is this a polynomial running time -- justify your answer. (A tangential question: Why is the algorithm correct?)

HW 1 solutions

Implementation Steps

(0) How to represent the input?

2D arrays: WomanPref, ManPref
(1) How do we find a free woman w?

Linked list: free
(2) How would w pick her best unproposed man m?
(3) How do we know who m is engaged to?
(4) How do we decide if m prefers w ' to w ?

Overall running time

$\operatorname{Init}(1-4)$

$n^{2} \times($ Query/Update(1-4) $)$

Questions?

Answering Q4

rank i

(4) How do we decide if m prefers w^{\prime} to w ?

Puzzle

Prove that any algorithm for the SMP takes $\Omega\left(\mathrm{n}^{2}\right)$ time

Main Steps in Algorithm Design

NRMP
 National Resident Matching Program

Reman Prex

Correctness Analysis

Reading Assignments

Sec 1.1 and Chap. 2 in [KT]

Up Next....

Graphs

Graphs are omnipresent

 jetBluejanpryamino

Airline Route maps

What does this graph represent?

Internet

And this one?

Math articles on Wikipedia

And this one?

Rest of today's agenda

Basic Graph definitions

Paths

Connectivity

u and w are connected iff there is a path between them

A graph is connected iff all pairs of vertices are connected

Connected Graphs

Every pair of vertices has a path between them

Cycles

Sequence of k vertices connected by edges, first k - 1 are distinct

Formally define everything

