Lecture 14

CSE 331
Sep 29, 2023

If you need it, ask for help

Register project groups TONIGHT! Deadline: Friday, Sep 29, 11:59pm

CSE 331
Syllabus
Piazza Schedule
Homeworks ${ }^{-}$
Autolab
Project - Support Pages -
D channel

Sample Exams v

Forming groups

You form groups of size exactly three (3) for the project. Below are the various logis
Project Overview

- You have two choices in forming your group:

1. You can form your group on your own: i.e. you can submit the list of EXACTLY three (3) groups members in your group.

</> Note

Note that if you pick this option, your group needs to have exactly THREE (3) members. In particular, if your group has only two members you cannot submit as a group of size two. If you do not know many people in class, feel free to use piazza to look for the third group member.
Also, if you form a group of size three, please make only one submission per group.
2. You can submit just your name, and you will be assigned a random group among all students who take this second option. However, note that if you pick this option you could end up in a group of size 2 . There will be at most two groups of size 2 .

</> Potential risk

Note that if you pick the option of being assigned a random group, you take on the risk that a assigned group might not "pull their weight." We unfortunately cannot help with such aspects of group dynamics. (Of course if a group member is being abusive, please do let Atri know.) Please note that a group member who does not do much work will get penalized on the individual component of the project grade.
-
Submitting your group composition
Use this Google form ['] to submit your group composition (the form will allow you to pick one of the two options above).

- You need to fill in the form for group composition by 11:59pm on Friday, September 30.

Upcoming quiz/exams

Quiz 1 Friday NEXT week
Mid-term 1 Wednesday Oct 18

Mid-term 2 Fri two days after Mid-term 1

Bit more on Quiz 1

Quiz 1 on Friday, Oct 6

The first quiz will be from 11:00-11:10am in class on Friday, October 6 . We will have a 5 mins break after the quiz and the lecture will start at 11:15am.
We will hand out the quiz paper at 10:55am but you will NOT be allowed to open the quiz to see the actual questions till 11:00am. However, you can use those 5 minutes to go over the instructions and get yourself in the zone.

There will be two T/F with justification questions (like those in the T/F polls.) I will post sample mid-terms by Monday night so that you'll be able to see the formatting of such T/F questions.

Also quiz 1 will cover all topics we cover in class until Monday, Oct 2.
Also like the mid-term y'all can bring in one letter sized cheat-sheet (you can use both sides). But other than cheatsheet and writing implements nothing else is allowed.

Questions?

Depth First Search (DFS)

I REALCY NEED TO STOP USING DEPTH-FIRST SEARCHES.

DFS(u)

Mark u as explored and add u to R

For each edge (u, v)

If v is not explored then DFS(v)

A DFS run

Connected components are disjoint

Either Connected components of s and t are the same or are disjoint

Computing all CCs

Questions/Comments?

Today's agenda

Run-time analysis of BFS (DFS)

Stacks and Queues

Last in First out

First in First out

But first...

How do we represent graphs?

Graph representations

Questions/Comments?

2•\# edges = sum of \# neighbors

$$
2 m=\Sigma_{u \text { in } v} n_{u}
$$

Give 2 pennies to each edge
Total \# of pennies $=2 \mathrm{~m}$

Each edges gives one penny to its end points

$$
\# \text { of pennies } u \text { receives }=n_{u}
$$

Breadth First Search (BFS)

Build layers of vertices connected to s

$$
L_{0}=\{s\}
$$

Assume $\mathrm{L}_{0}, . ., \mathrm{L}_{\mathrm{j}}$ have been constructed
L_{j+1} set of vertices not chosen yet but are connected to L_{j}

Stop when new layer is empty

Rest of Today's agenda

Space complexity of Adjacency list representation

Quick run time analysis for BFS

Quick run time analysis for DFS (and Queue version of BFS)

