Lecture 18

CSE 331
Oct 11, 2023

Please do fill in the feedback

Feedback on CSE 331

Overall your feeling about CSE 331
19 responses
Very HappyChallenged and happyChallenged and mehChallenged and unhappyChallenged and very unhappyI'm bored!

Mid-terms next week

Mid-term 1: next Wed in class

Mid-term 2: Fri next week in class

Grading status

Hopefully by tonight: Quiz 1, HW 3

Project Coding submissions

Issue with project coding submissions

So it seems like with the latest update to Autolab has broken a part of the grading of the coding projects (currently the issue has been reported for Problem 1 but I suspect the issue will be there for other problems as well).

Specifically, Autolab assigns the correct grade to the student who submits for the group but incorrectly throws an error for the other students in the group.

So going forward:

- I'll be implementing a fix for that and hope to be done by the end of the week
- Once the fix is in place, l'll ask everyone who has already submitted to re-submit.
- In the meantime, y'all can still submit your code to check if your submission works-- it's just that for now please only look at the score assigned to the student who submit.

Thanks to those bought this to my notice and apologies for any inconvenience this might cause y'all.

```
autolab
project
```


HW 4 is out

Homework 4

Due by 11:30pm, Tuesday, October 17, 2023.
Make sure you follow all the homework policies.
All submissions should be done via Autolab.
The care package on minimizing the maximum lateness problem would be useful for Q3 and might be useful for Q2(b) as well.

Question 1 (High Speed Internet) [50 poin

The Problem
We come back to the issue of many USA regions not having high speed internet. In this question, you will consider an aigorithr out a (fictional) place get high speed Internet.

You are the algorithms whiz in the effort to bring high speed Internet to SomePlaceInUSA. After lots of rounds of discussions and public feedback, it was decided that the most cost-effective way to bring high speed internet to SomePlaceInUSA was to install high speed cell towers to connect all houses in SomePlaceInUSA to high speed internet. There are two things in your favor:

1. It just so happens that all of the n houses in SomePlaceInUSA are on the side of a straight road that runs through the town.

Make broadband more available

Population: 79518
Median Income: $\$ 41,368.88$
Access to any cable technology: 67.5% Access to two or more wireline providers: 61.2\%

Say you are tasked to come up with the infrastructure

Erie County
Population: 913295
Median Income: \$49,817.67
Access to any cable technology: 98.9%
Access to two or more wireline providers 96.8\%

HW 4 Q1: How to lay down towers

Here is a quick visual argument for the above leads to continuous cell coverage:

Interval Scheduling Problem

Input: n intervals $[s(i), f(i))$ for $1 \leq i \leq n$

Output: A schedule S of the n intervals

No two intervals in S conflict
$|S|$ is maximized

Analyzing the algorithm

R : set of requests
Set S to be the empty setWhile R is not emptyChoose in R with the earliest finish time
Add ito SRemove all requests that conflict with ifrom R
Return S* = S

Greedy "stays ahead"

Greedy stays ahead lemma

$$
\begin{aligned}
& S^{*}=\left\{i_{1}, \ldots, i_{k}\right\} \\
& O=\left\{j_{1}, \ldots, j_{m}\right\}
\end{aligned}
$$

Lemma 1: For all $1 \leq \ell \leq k$

$$
f\left(i_{\ell}\right) \leq f\left(j_{\ell}\right)
$$

Questions?

Proof of Lemma 1 on the board...

Runtime analysis of Greedy Algo.

Questions/Comments?

Algorithm implementation

Go through the intervals in order of their finish time

Check if $s[i]<f(1)$

In general, if jth interval is the last one chosen
Pick smallest $i>j$ such that $s[i] \geq f(j)$

The final algo

$O(n \log n)$ time sort intervals such that $f(i) \leq f(i+1)$

$\mathrm{O}(\mathrm{n})$ time build array $\mathrm{s}[1 . . n]$ s.t. $\mathrm{s}[\mathrm{i}]=$ start time for i

$$
\begin{aligned}
& \text { Add } 1 \text { to } S \text { and set } f=f(1) \\
& \text { For } i=2 \text {.. } n \\
& \qquad \begin{array}{c}
\text { If } s[i] \geq f \\
\text { Add } i \text { to } S \\
\text { Set } f=f(i)
\end{array} \\
& \text { Return } S^{*}=S
\end{aligned}
$$

Questions/Comments?

Reading Assignment

Sec 4.1 of [KT]

The "real" end of Semester blues

Write up a term paper

Party!

Exam study
331 HW

The "real" end of Semester blues

Write up a term paper

Exam study

The algorithmic task

Write up a term paper

You have to do

ALL the tasks

Project

Friday
Saturday
Sunday
Monday
Tuesday

Scheduling to minimize lateness

Write up a term paper

Exam study

One possible schedule

Minimizing Max Lateness

Minimizing Maximum Lateness

This page collects material from previous incarnations of CSE 331 on scheduling to minimize maximum lateness.

Where does the textbook talk about this?

Section 4.2 in the textbook has the lowdown on the problem of scheduling to minimize maximum lateness.

Fall 2018 material

First lecture
Here is the lecture video:

Rest of today

Shortest Path Problem

Reading Assignment

Sec 2.5 of [KT]

Shortest Path problem

Input: Directed graph G=(V,E)
Edge lengths, ℓ_{e} for e in E

"start" vertex s in V

Output: All shortest paths from s to all nodes in V

Naïve Algorithm

$\Omega(n!)$ time

Dijkstra's shortest path algorithm

