Lecture 19

CSE 331 Oct 13, 2023

Respond to project group members

📕 note @321 💿 ★ 🔓 🔻

stop following

Actions

1 view

Please respond to your project group mates

Please do respond back if a group project member reaches out to you to get started on the project. Just FYI, *I always reserve the right to kick you out of your group (which means a 0 for you)* in case you are unresponsive to repeated requests from your group members.

I understand some of you might be busy now-- it is fine with me if your group decide as a whole how the work will be divided (so e.g. someone does less work on the initial problems and someone does more work on the later problems). As long as the group agrees, I do not care about the details.

But please do respond back in a timely fashion: not doing so is you not doing your part in a group project.

project

Edit good note 0

Updated 1 minute ago by Atri Rudra

Delay in grading Quiz 1

Enote @314 (c) * following 58 views
Actions *
Quiz 1 grading will be done by Friday
Unlike what I said in lecture today, I'll not be able to finish grading quiz 1 tonight. I'll try for tomorrow but at this point it is safer to say I'll finish it by Friday. Sorry for the delay!

quiz1
grading

Questions?

Shortest Path Problem

Another more important application

Is BGP a known acronym for you?

Routing uses shortest path algorithm

Shortest Path problem

Output: Length of shortest paths from s to all nodes in V

Dijkstra's shortest path algorithm

Questions/Comments?

On to the board...

Towards Dijkstra's algo: part ek

Determine d(t) one by one

Towards Dijkstra's algo: part do

Determine d(t) one by one

Let u be a neighbor of s with smallest $\ell_{(s,u)}$

Not making any claim on other vertices

Length of \checkmark is ≥ 0

Towards Dijkstra's algo: part teen

Determine d(t) one by one

Assume we know d(v) for every v in R

Compute an upper bound d'(w) for every w not in R

$$d(w) \leq d(u) + \ell_{(u,w)}$$

- $d(w) \leq d(x) + \ell_{(x,w)}$
- $d(w) \leq d(y) + \ell_{(y,w)}$

 $d'(w) = \min_{e=(u,w) \text{ in } E, u \text{ in } R} d(u) + \ell_e$

Questions/Comments?

