Lecture 27

CSE 331 Nov 6, 2023

Reflection P1+2 due TODAY

Mon, Nov 6	Kickass Property Lemma D ^{F22} D ^{F21} D ^{F19} D ^{F18} D ^{F17} x ²	[KT, Sec 5.4] (Project (Problems 1 & 2 Reflection) in)
Tue, Nov 7		(HW 6 out)
Wed, Nov 8	Weighted Interval Scheduling 2522 2571 2571 2571 x2	[KT, Sec 6.1]
Fri, Nov 10	Recursive algorithm for weighted interval scheduling problem 2522 5521 5519 5517 x ²	[KT, Sec 6.1]
Mon, Nov 13	Subset sum problem ▶ F22 ▶ F21 ▶ F19 ▶ F18 ▶ F17 x ²	[KT, Sec 6.1, 6.2, 6.4]
Tue, Nov 14		(HW 7 out, HW 6 in)
Wed, Nov 15	Dynamic program for subset sum D ^{F22} D ^{F21} D ^{F19} D ^{F18} D ^{F17} x ²	[KT, Sec 6.4]
Fri, Nov 17	Shortest path problem ▶ ^{F22} ▶ ^{F21} ▶ ^{F19} ▶ ^{F18} ▶ ^{F17} x ²	[KT, Sec 6.8]
Mon, Nov 20	Bellman-Ford algorithm 2 ⁵²² 2 ^{F21} 2 ^{F19} 2 ^{F18} 2 ^{F17} x ²	[KT, Sec 6.8]
Wed, Nov 22	No class	Thanksgiving Break
Fri, Nov 24	No class	Thanksgiving Break
Mon, Nov 27	The P vs. NP problem P ^{F22} F ²¹ F ¹⁹	[KT, Sec 8.1]
Tue, Nov 28		(HW 8 out, HW 7 in)
Wed, Nov 29	More on reductions, P and NP ▶ ^{F22} ▶ ^{F21} ▶ ^{F19}	[KT, Sec 8.1]
Fri, Dec 1	NP-Completeness D ^{F22} D ^{F21} D ^{F19}	[KT, Sec 8.3, 8.4] (Project (Problem 3 Coding) in)
Mon, Dec 4	The SAT problem 5 ²² 5 ²¹ 5 ¹⁹	[KT, Sec. 8.2] (Quiz 2) (Project (Problem 3 <mark>Reflection</mark>) in)
Tue, Dec 5		(HW 8 in)
Wed, Dec 6	k-coloring problem ▶ ^{F22} ▶ ^{F21} ▶ ^{F19}	[KT, Sec 8.7]
Fri, Dec 8	k-coloring is NP-complete D ^{F22} D ^{F21} D ^{F19}	[KT, Sec 8.7] (Project (Problems 4 & 5 Coding) in)
Mon, Dec 11	Wrapup	
Tue, Dec 12		(Project (Problems 4 & 5 Reflection) in) (Project Survey in)
Wed, Dec 13	Final Exam	(12:00-2:30pm in NSC 201 (usual classroom))

Group formation instructions

Autolab group submission for CSE 331 Project

The lowdown on submitting your project (especially the coding and reflection) problems as a group on Autolab.

Follow instructions **EXACTLY** as they are stated

The instruction below are for Coding Problem 1

You will have to repeat the instructions below for EACH coding AND reflection problem on project on Autolab (with the appropriate changes to the actual problem).

Form your group on Autolab

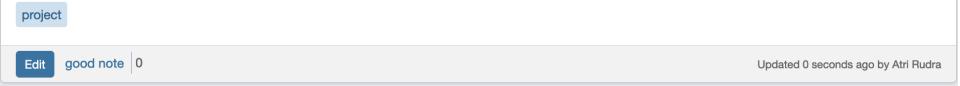
Groups on Autolab will NOT be automatically created

You will have to form a group on Autolab by yourself (as a group). Read on for instructions on how to go about this.

No project group => no submission

📕 note @432 💿 ★ 🔓 🔻

stop following 13 views


Actions -

You can only submit if you have an official group

If for whatever reason you did not create or sign up to be on a random group by the deadline (and you did not get an email from me confirming your group), then you **cannot** submit anything for the project.

I will be double-checking the groups on Autolab with the official group after the deadline. If you formed a group even though you do not have an official group that would be considered an Al violation.

Also make sure that you are in a group before the *final* submission by your group. If your group member submits without adding you to a group on Autolab, you will get a **zero**.

Final exam conflict

note @44	7 🕒	*	6-	
----------	-----	---	----	--

stop following 19 views

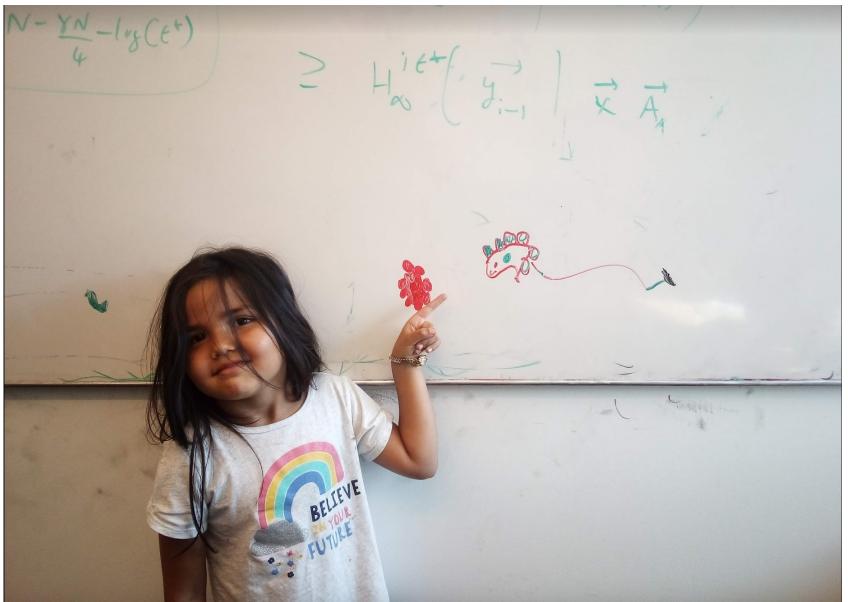
Actions -

Final exam conflicts

I know some of you have an exam conflict with CSE 331 final exam. Since I'm not sure if I know the exact set of students with conflict, I figured I'll do a piazza post.

If you have an exam conflict with the CSE 331 final please EMAIL me by 5pm on Friday, Nov 17. If you email me after this deadline, I cannot promise to be able to give you a makeup option that works with your schedule.

Please note that the makeup final will be on Tuesday, Dec 12 (i.e. a day before the scheduled final exam). My goal is to pick a time that works for everyone on Dec 12.

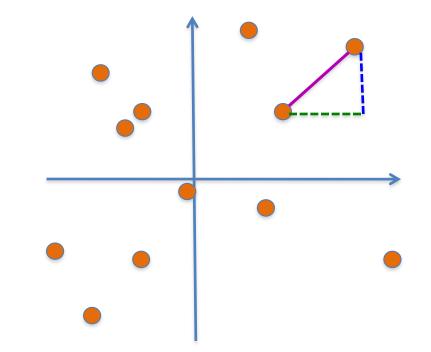

So if you email me for a makeup final exam, please send me all the time(s) that you do a makeup on Tuesday, Dec 12 between 9am-5pm.

final

Edit good note 1

Updated 60 minutes ago by Atri Rudra

Questions/Comments?



Closest pairs of points

Input: n 2-D points $P = \{p_1,...,p_n\}; p_i = (x_i, y_i)$

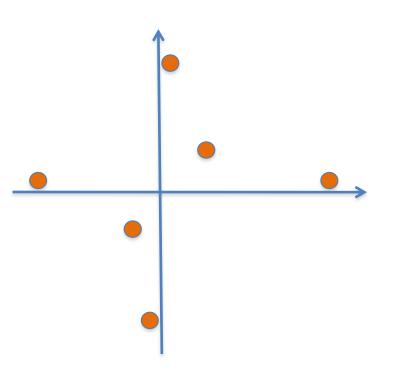
 $d(p_i, p_j) = ((x_i - x_j)^2 + (y_i - y_j)^2)^{1/2}$

Output: Points p and q that are closest

Group Talk time

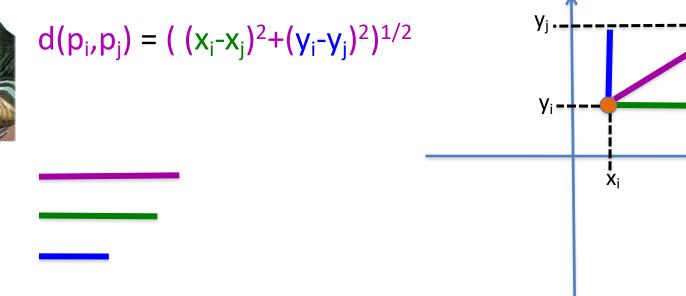
O(n²) time algorithm?

1-D problem in time O(n log n) ?

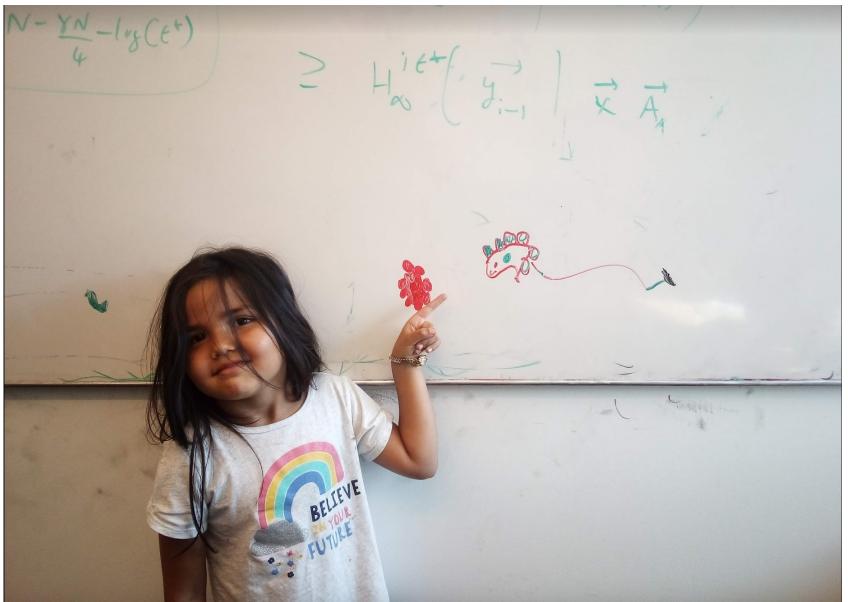


Sorting to rescue in 2-D?

Pick pairs of points closest in x co-ordinate


Pick pairs of points closest in y co-ordinate

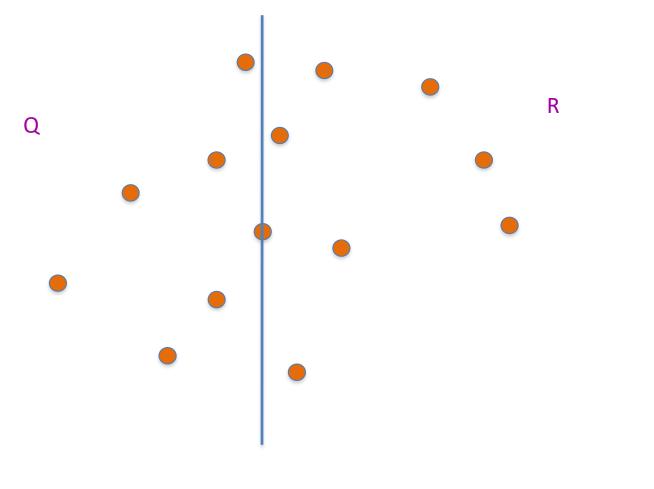
Choose the better of the two


A property of Euclidean distance

The distance is larger than the **x** or **y**-coord difference

Questions/Comments?

Problem definition on the board...

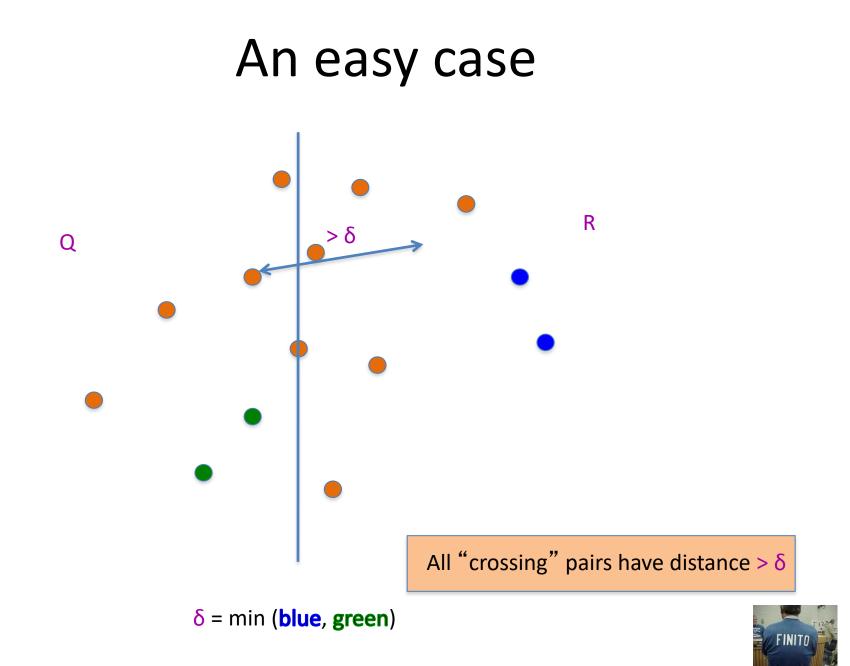

Rest of Today's agenda

Divide and Conquer based algorithm

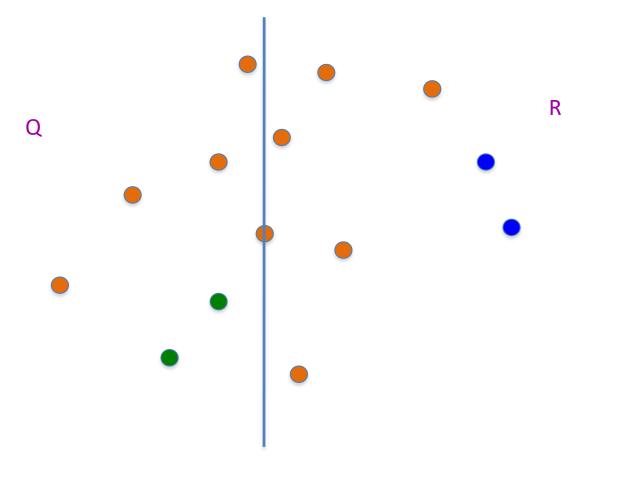
Dividing up P R Q

First n/2 points according to the x-coord

Recursively find closest pairs

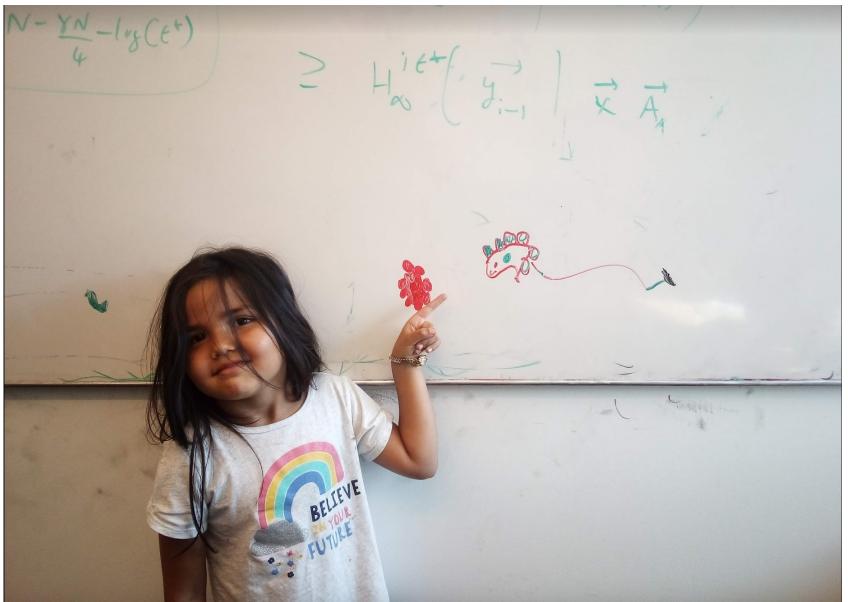


 δ = min (**blue**, green)

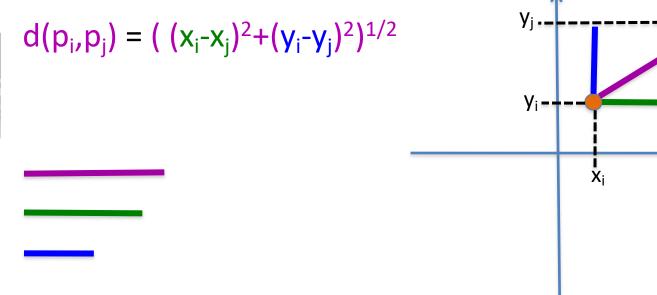

An aside: maintain sorted lists

 P_x and P_y are P sorted by x-coord and y-coord

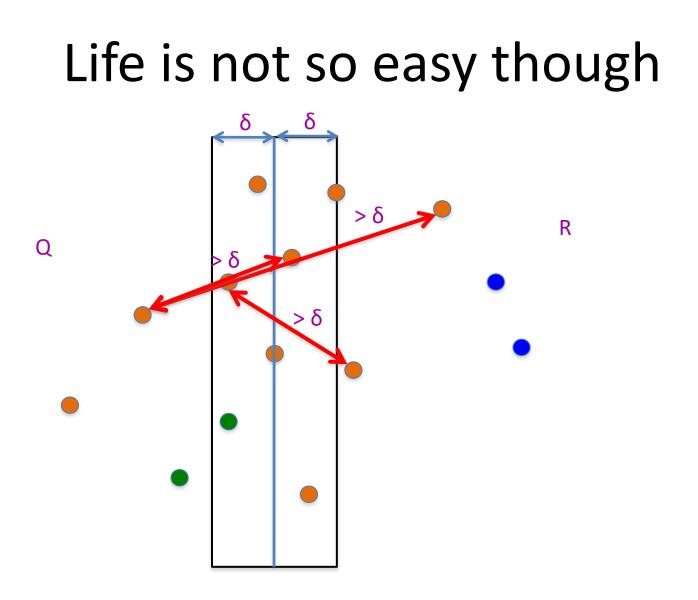
 Q_x , Q_y , R_x , R_y can be computed from P_x and P_y in O(n) time



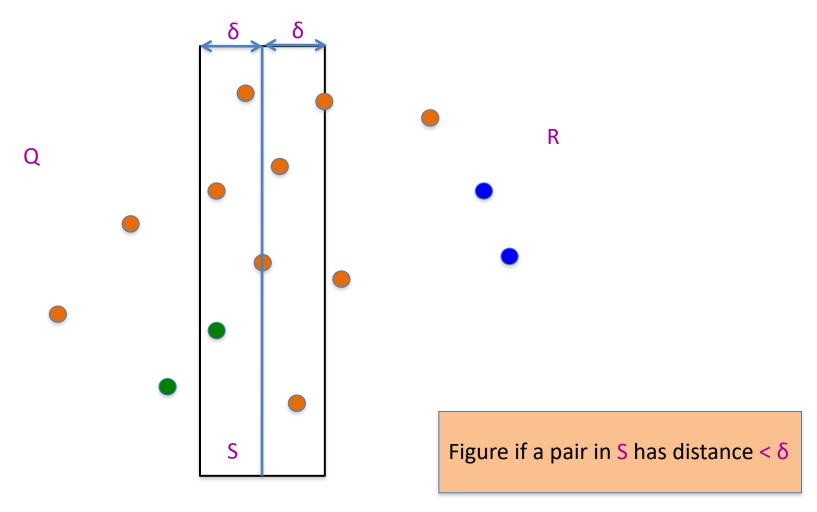
Life is not so easy though


 δ = min (**blue**, green)

Questions/Comments?



Euclid to the rescue (?)



The distance is larger than the **x** or **y**-coord difference

 δ = min (**blue**, green)

All we have to do now

 δ = min (**blue**, green)

The algorithm so far...

Input: p 2 D points D = (p_1, p_2) b $p_2(y_1, y_2)$

 $O(n \log n) + T(n)$

Input: n 2-D points P = { $p_1,,p_n$ }; $p_i = (x_i, y_i)$							
Sort P to get P_x and P_y							
Closest-Pair (P _x , P _y)		O(n log n)	T(< 4) = c				
If n < 4 then find closest point by brute-force			T(n) = 2T(n/2) + cn				
Q is first half of P _x and R is the rest		O(n)					
Compute Q_x , Q_y , R_x and R_y		O(n)					
$(q_0,q_1) = Closest-Pair (Q_x, Q_y)$			O(n log n) overall				
$(r_0, r_1) = Closest-Pair (R_x, R_y)$							
$δ = min (d(q_0, q_1), d(r_0, r_1))$		O(n)					
S = points (x,y) in P s.t. $ x - x^* < \delta$		O(n)					
return Closest-in-box (S, (q ₀ ,q ₁), (r ₀ ,r ₁))		Assume	can be done in <mark>O(n)</mark>				