
Lecture 28

CSE 331
Nov 8, 2023

Final exam conflict

Mozilla Responsible Unhacking

HW 6 is out

Questions/Comments?

Closest pairs of points

Input: n 2-D points P = {p1,…,pn}; pi=(xi,yi)

Output: Points p and q that are closest

d(pi,pj) = ((xi-xj)2+(yi-yj)2)1/2

Dividing up P

First n/2 points according to the x-coord

Q
R

Recursively find closest pairs

δ = min (,)

Q
R

An aside: maintain sorted lists

Px and Py are P sorted by x-coord and y-coord

Qx, Qy, Rx, Ry can be computed from Px and Py in O(n) time

An easy case

δ = min (,)

Q
R> δ

All “crossing” pairs have distance > δ

Life is not so easy though

δ = min (,)

Q
R

Euclid to the rescue (?)

d(pi,pj) = ((xi-xj)2+(yi-yj)2)1/2

yi

xi xj

yj

The distance is larger than the or -coord difference

Life is not so easy though

δ = min (,)

Q
R

δ δ

> δ

> δ

> δ

All we have to do now

δ = min (,)

Q
R

δ δ

S Figure if a pair in S has distance < δ

The algorithm so far…
Input: n 2-D points P = {p1,…,pn}; pi=(xi,yi)

Sort P to get Px and Py

Q is first half of Px and R is the rest

Closest-Pair (Px, Py)

Compute Qx, Qy, Rx and Ry

(q0,q1) = Closest-Pair (Qx, Qy)

(r0,r1) = Closest-Pair (Rx, Ry)

δ = min (d(q0,q1), d(r0,r1))

S = points (x,y) in P s.t. |x – x*| < δ

return Closest-in-box (S, (q0,q1), (r0,r1))

If n < 4 then find closest point by brute-force

Assume can be done in O(n)

O(n log n)

O(n)

O(n)

O(n)

O(n)

O(n log n) + T(n)

T(< 4) = c

T(n) = 2T(n/2) + cn

O(n log n) overall

Questions/Comments?

Rest of today’s agenda

Implement Closest-in-box in O(n) time

