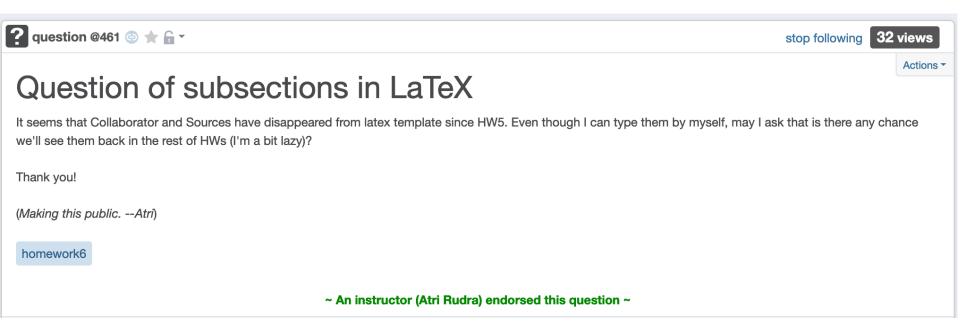
Lecture 29

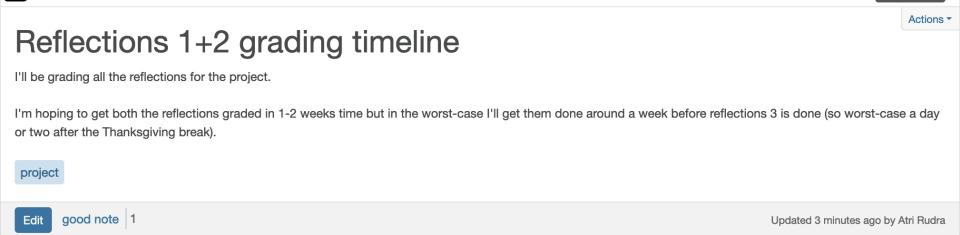
CSE 331

Nov 10, 2023

HW 6 Q1+2 templates buggy



Reflections 1+2 grading

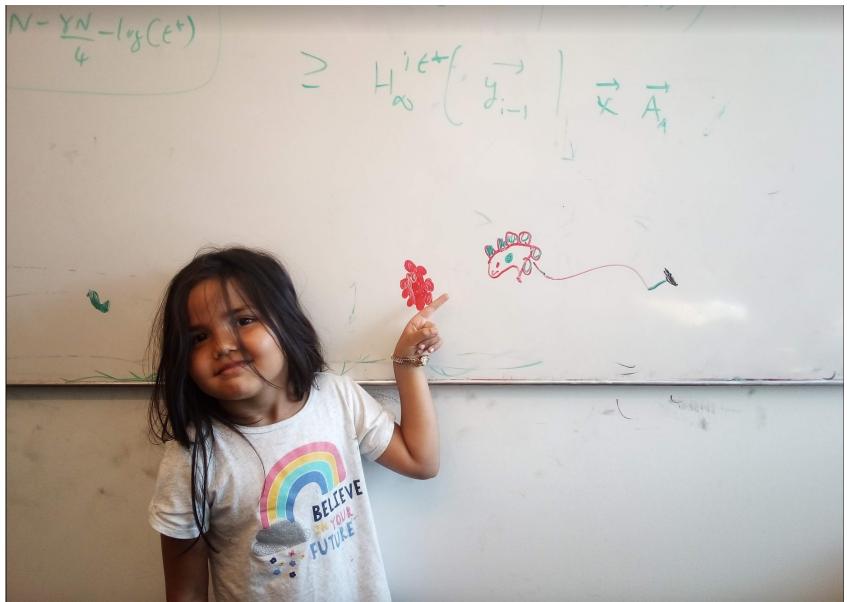


16 views

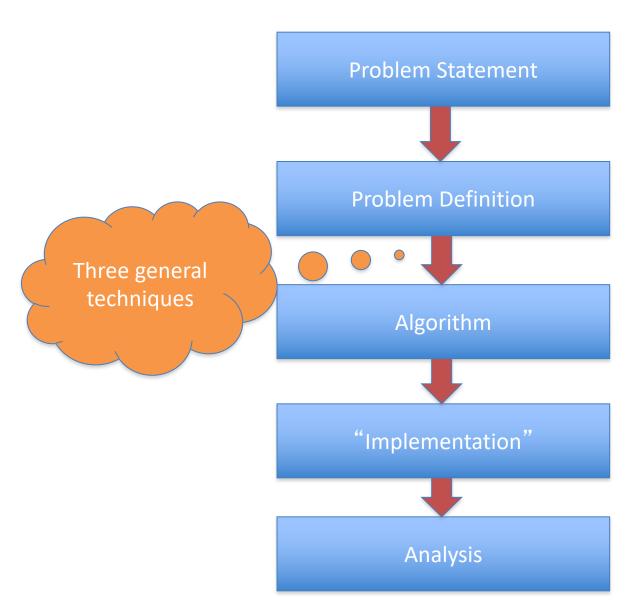
stop following

note @466 🗐 ★ 🔓 🕆

Questions/Comments?



High level view of CSE 331

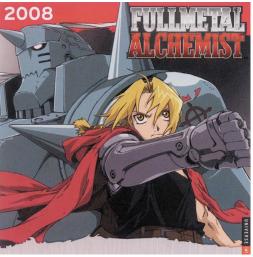


Data Structures

Correctness+Runtime Analysis

Greedy Algorithms

Natural algorithms



Reduced exponential running time to polynomial

Divide and Conquer

Recursive algorithmic paradigm

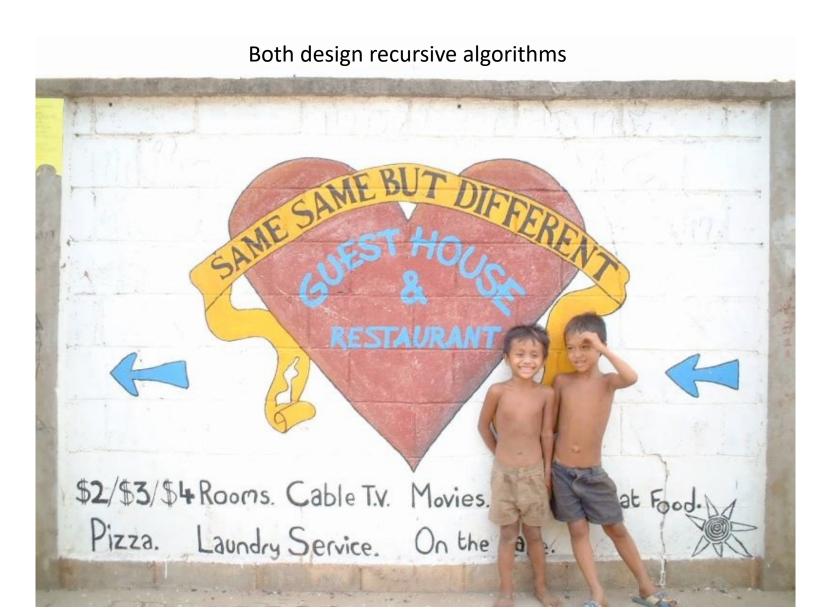
Reduced large polynomial time to smaller polynomial time

A new algorithmic technique

Dynamic Programming

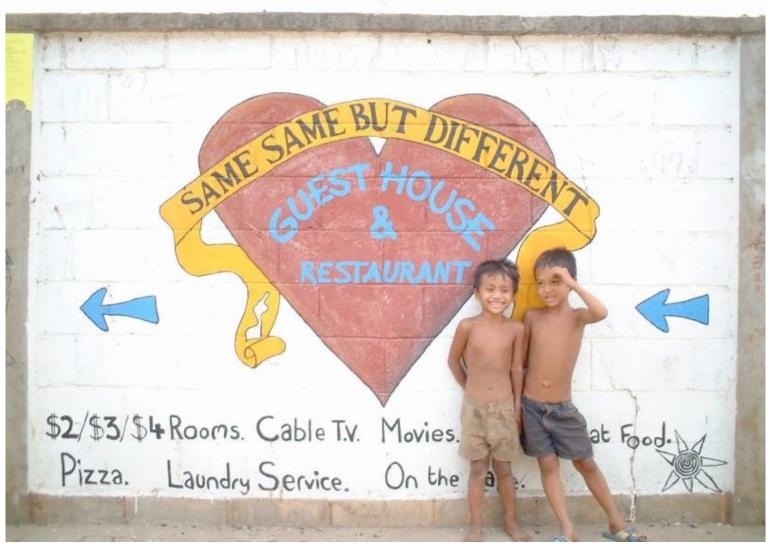
Dynamic programming vs. Divide & Conquer

Same same because



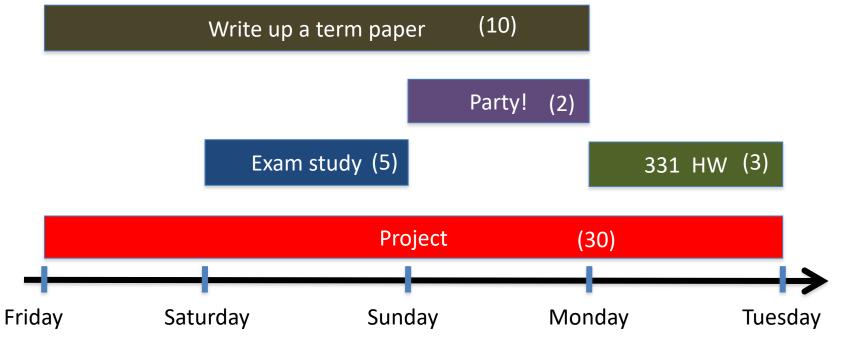
Different because

Dynamic programming is smarter about solving recursive sub-problems

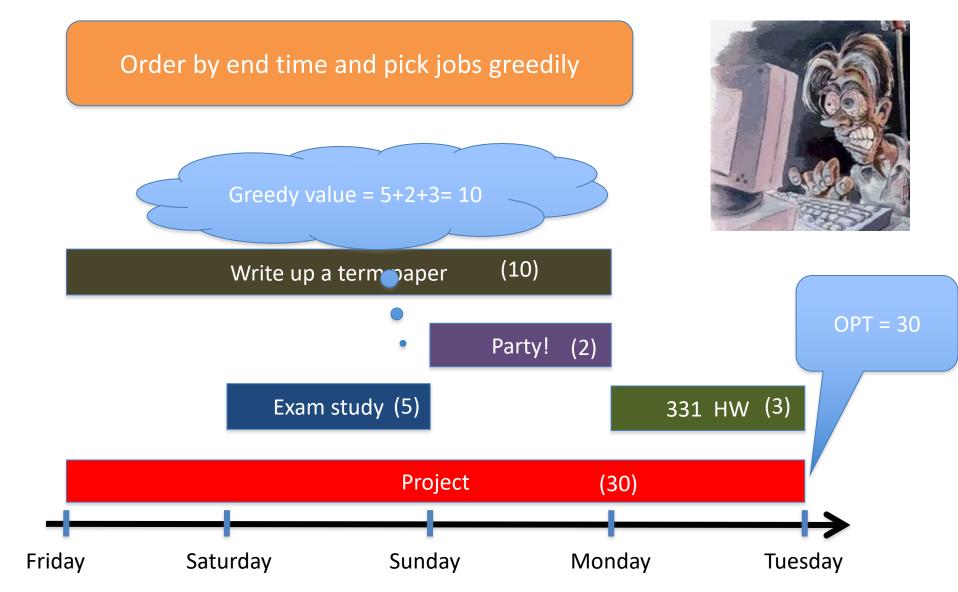


End of Semester blues

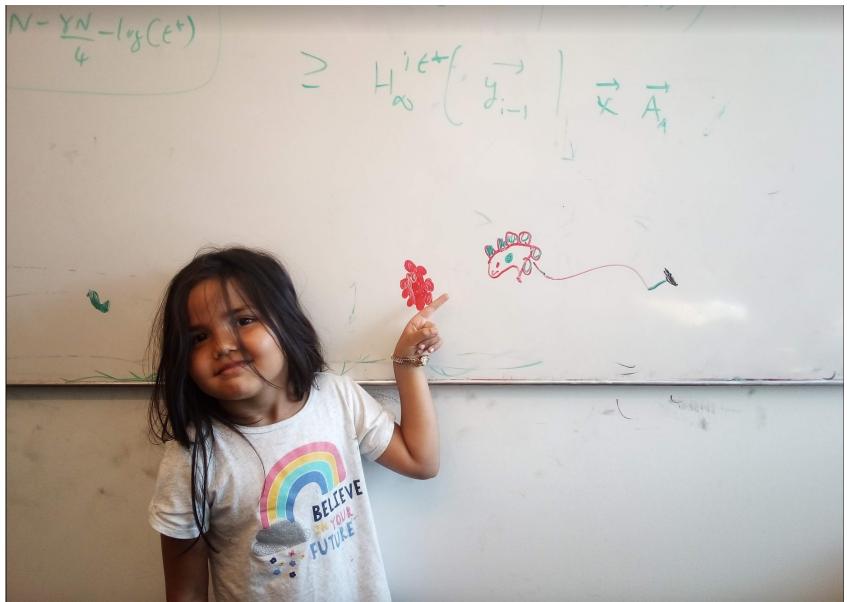
Can only do one thing at any day: what is the optimal schedule to obtain maximum value?



Previous Greedy algorithm



Questions/Comments?



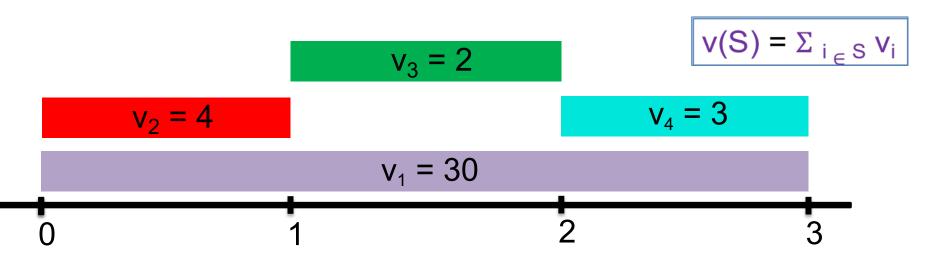
Today's agenda

Formal definition of the problem

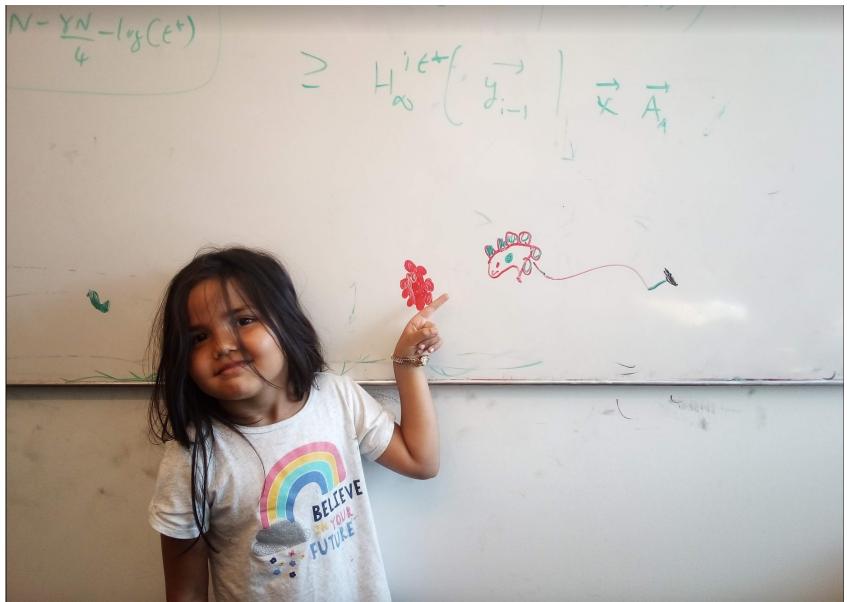
Start designing a recursive algorithm for the problem

Weighted Interval Scheduling

Output: A valid schedule $S \subseteq [n]$ that maximizes v(S)



Questions/Comments?



Previous Greedy Algorithm

```
R = original set of jobs
```

$$S = \phi$$

While R is not empty

Choose i in R where f_i is the smallest

Add i to S

Remove all requests that conflict with i from R

Return
$$S^* = S$$

$$v_3 = 2$$

$$V_2 = 4$$

$$V_4 = 3$$

$$v_1 = 30$$

0

2

3

Perhaps be greedy differently?

```
R = original set of jobs
```

$$S = \phi$$

While R is not empty

Choose i in R where $v_i/(f_i - s_i)$ is the largest

Add i to S

Remove all requests that conflict with i from R

Return
$$S^* = S$$

$$v_3 = 2$$

$$V_2 = 4$$

$$V_4 = 3$$

$$v_1 = 30$$

Can this work?

```
R = original set of jobs
```

$$S = \phi$$

While R is not empty

Choose i in R where $v_i/(f_i - s_i)$ is the largest

Add i to S

Remove all requests that conflict with i from R

$$v_3 = 2$$

$$v_2 = 6$$

$$V_4 = 3$$

$$V_1 = 12$$

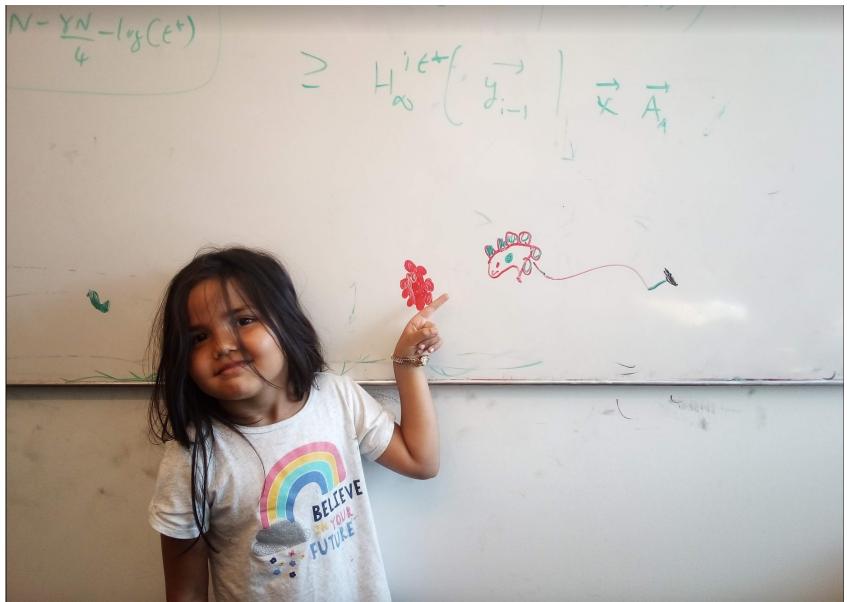
Avoiding the greedy rabbit hole

https://www.writerightwords.com/down-the-rabbit-hole/

Provably
IMPOSSIBLE
for a large
class of
greedy algos

There are no known greedy algorithm to solve this problem

Questions/Comments?



Perhaps a divide & conquer algo?

Divide the problem in 2 or more many EQUAL SIZED INDEPENDENT problems

Recursively solve the sub-problems

Patchup the SOLUTIONS to the sub-problems

Perhaps a divide & conquer algo?

RecurWeightedInt([n])

if n = 1 return the only interval

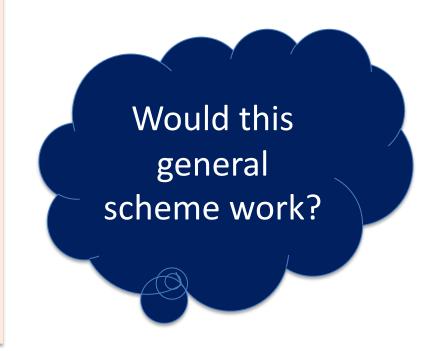
L = first n/2 intervals

R = last n/2 intervals

 $S_L = RecurWeightedInt(L)$

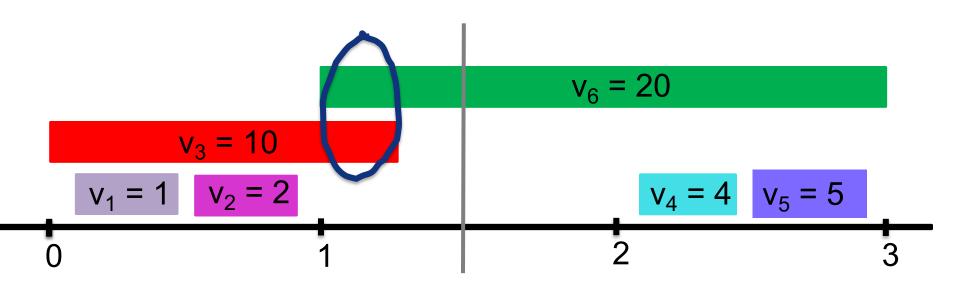
 $S_R = RecurWeightedInt(R)$

PatchUp(S_L , S_R)



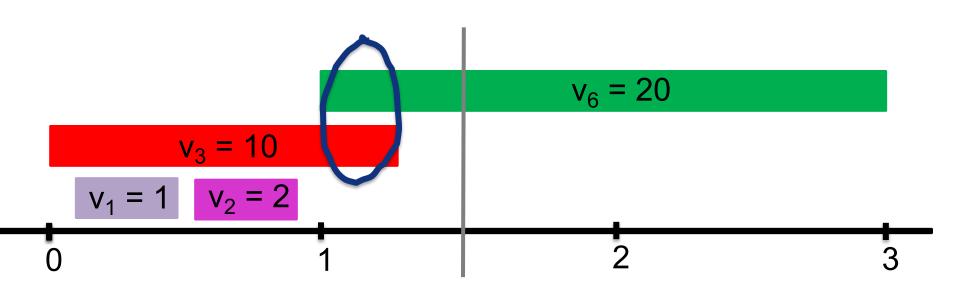
Divide the problem in 2 or more many EQUAL SIZED INDEPENDENT problems

Sub-problems NOT independent!

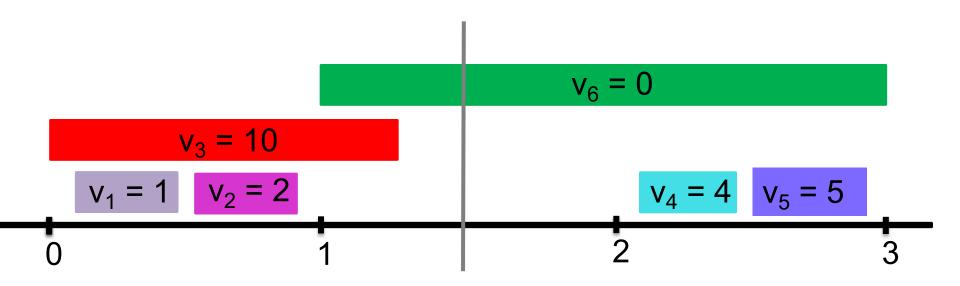


Perhaps patchup can help?

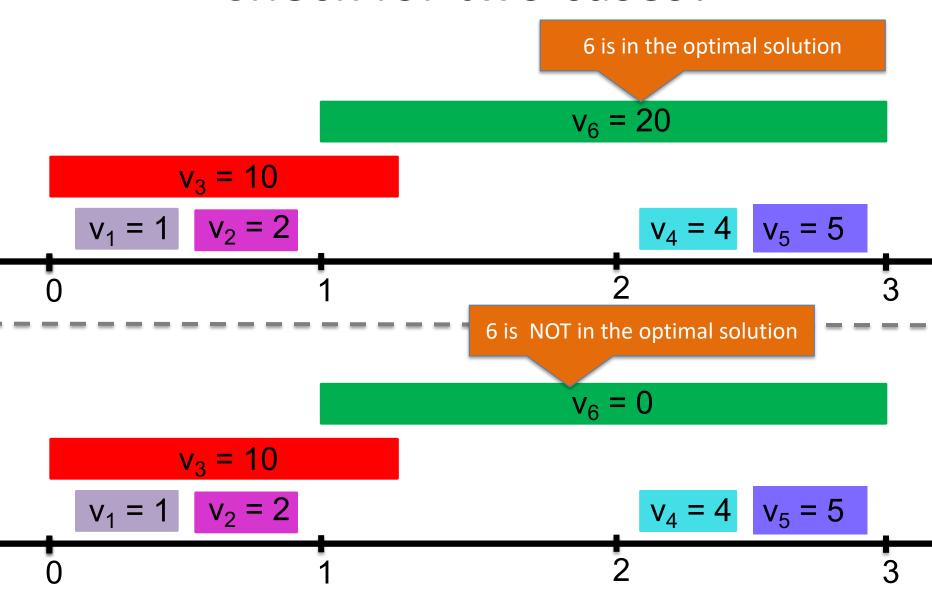
Patchup the SOLUTIONS to the sub-problems



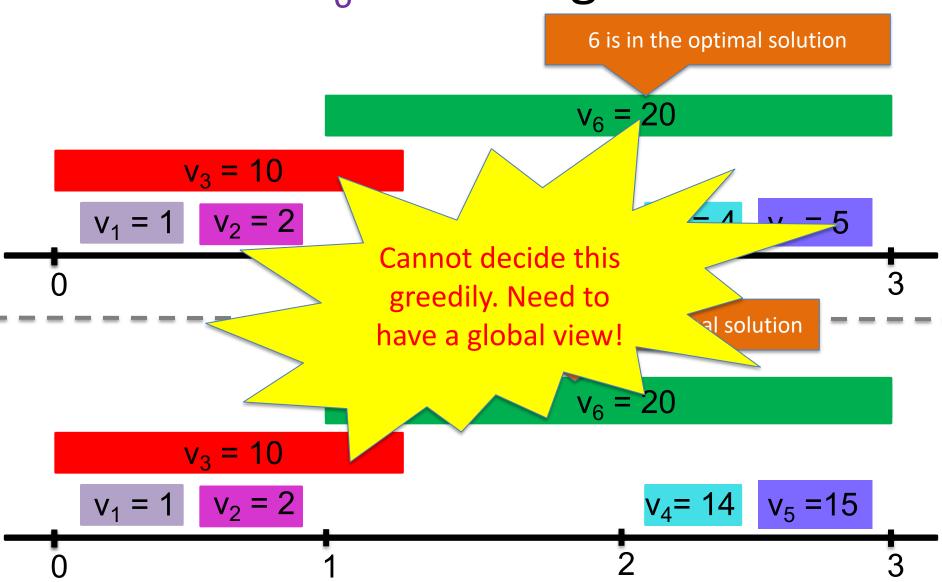
Sometimes patchup NOT needed!



Check for two cases?



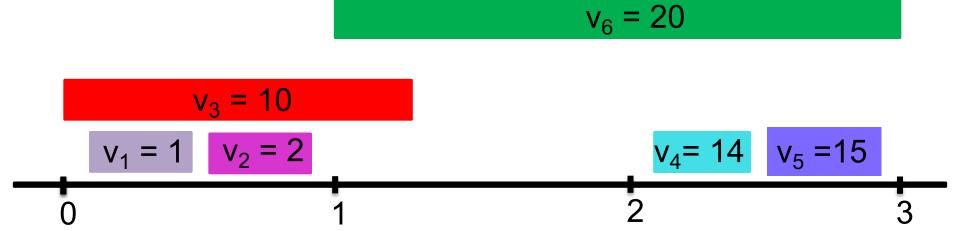
Check if v_6 is the largest value?



Check out both options!

Case 1: 6 is in the optimal solution

6 is not in optimal solution



So what sub-problems?

Divide the problem in 2 or more many EQUAL SIZED

INDEPENDENT problems

