Lecture 30

CSE 331
Nov 13, 2023

HW 6 Q1+2 templates buggy

Actions ${ }^{-}$

Question of subsections in LaTeX

It seems that Collaborator and Sources have disappeared from latex template since HW5. Even though I can type them by myself, may I ask that is there any chance we'll see them back in the rest of HWs (I'm a bit lazy)?

Thank you!
(Making this public. --Atri)
homework6
~ An instructor (Atri Rudra) endorsed this question ~

Reflections 1+2 grading

Reflections $1+2$ grading timeline

I'll be grading all the reflections for the project.
I'm hoping to get both the reflections graded in 1-2 weeks time but in the worst-case I'll get them done around a week before reflections 3 is done (so worst-case a day or two after the Thanksgiving break).

```
project
```


Final exam conflict

Final exam conflicts

I know some of you have an exam conflict with CSE 331 final exam. Since I'm not sure if I know the exact set of students with conflict, I figured I'll do a piazza post.
 schedule.

Please note that the makeup final will be on Tuesday, Dec 12 (i.e. a day before the scheduled final exam). My goal is to pick a time that works for everyone on Dec 12.
So if you email me for a makeup final exam, please send me all the time(s) that you do a makeup on Tuesday, Dec 12 between 9am-5pm.

Questions/Comments?

End of Semester blues

Can only do one thing at any day: what is the optimal schedule to obtain maximum value?

Write up a term paper

(10)

Party! (2)
Exam study (5)

$$
331 \text { HW (3) }
$$

Previous Greedy algorithm

Order by end time and pick jobs greedily

Weighted Interval Scheduling

Input: n jobs $\left(s_{i}, f_{i}, v_{i}\right)$

Output: A schedule S s.t. no two jobs in S have a conflict

$$
\text { Goal: } \max \Sigma_{\mathrm{i} \text { in } s} v_{j}
$$

Assume: jobs are sorted by their finish time

Today's agenda

Finish designing a recursive algorithm for the problem

Couple more definitions

$\mathrm{p}(\mathrm{j})=\operatorname{largest} \mathrm{i}$ < j s.t. i does not conflict with j
$=0$ if no such i exists

OPT(j) = optimal value on instance $1, . ., \mathrm{j}$

Moving to the board...

Property of OPT

A recursive algorithm

Exponential Running Time

Using Memory to be smarter

Using more space can reduce runtime!

How many distinct OPT values?

A recursive algorithm

M-Compute-Opt(j)

M-Compute-Opt(j)
= OPT(j)

If $\mathrm{j}=0$ then return 0
If $\mathrm{M}[\mathrm{j}]$ is not null then return $\mathrm{M}[\mathrm{j}]$
$\mathrm{M}[\mathrm{j}]=\max \left\{\mathrm{v}_{\mathrm{j}}+\mathrm{M}\right.$-Compute-Opt($\mathrm{p}(\mathrm{j}) \mathrm{)}, \mathrm{M}$-Compute-Opt($\left.\left.\mathrm{j}-1 \mathrm{I}\right)\right\}$
return $\mathrm{M}[\mathrm{j}]$

$$
\text { Run time }=0 \text { (\# recursive calls) }
$$

