Lecture 34

CSE 331
Nov 27, 2023

Next <= 2.5 weeks are brutal

Tue, Nov 28		(HW 8 out, HW 7 in)
Wed, Nov 29	More on reductions, P and NP $D^{\mathrm{F} 22} D^{\mathrm{F} 21} D^{\mathrm{F} 19}$	[KT, Sec 8.1]
Fri, Dec 1	NP-Completeness $D^{\text {F22 }} D^{\mathrm{F} 21} D^{\mathrm{F} 19}$	[KT, Sec 8.3, 8.4] (Project (Problem 3 Coding) in)
Mon, Dec 4	The SAT problem $D^{\mathrm{F} 22} D^{\mathrm{F} 21} D^{\mathrm{F} 19}$	[KT, Sec. 8.2] (Quiz 2) (Project (Problem 3 Reflection) in)
Tue, Dec 5		(HW 8 in)
Wed, Dec 6	k-coloring problem $\nabla^{\mathrm{F} 22} \nabla^{\mathrm{F} 21} \nabla^{\mathrm{F} 19}$	[KT, Sec 8.7]
Fri, Dec 8	k-coloring is NP-complete $D^{\mathrm{F} 22} D^{\mathrm{F} 21} D^{\mathrm{F} 19}$	[KT, Sec 8.7] (Project (Problems 4 \& 5 Coding) in)
Mon, Dec 11	Wrapup	
Tue, Dec 12		(Project (Problems 4 \& 5 Reflection) in) (Project Survey in)
Wed, Dec 13	Final Exam	(12:00-2:30pm in NSC 201 (usual classroom))

Homework 7 reminders

Homework 7

Due by 11:30pm Tuesday, November 28, 2023

Make sure you follow all the homework policies.
All submissions should be done via Autolab.

! Note on Timeouts on HW 7 Q3

For this problem the total timeout for Autolab is $\mathbf{4 8 0}$ s, which is higher the the usual timeout of 180 s in the earlier homeworks. So if your code takes a long time to run it'll take longer for you to get feedback on Autolab. Please start early to avoid getting deadlocked out before the feedback deadline.

Also for this problem, C++ and Java are way faster. The 480s timeout was chosen to accommodate the fact that Python is much slower than these two languages.

Our recommendation

- Either code in C++ or java OR
- If you want to program in python then test on first five test cases and test for all 10 only if they pass the first five.

a. Hint

For part (b) convince yourself that one should always schedule a job on the last day and then use it. If in your solution you use the hint, you will also have to convince the grader why you are convinced if you choose to use the hint, i.e. just using the hint as given (without any justification) will result in loss of points.
\bigcirc Common Mistake
Students correctly state the recurrence for the optimal solution for part (b) but do not state the order in which to solve the sub-problems.

Sample final exam

 Sample final exam

Since one of you asked for it, I figured I'll release the sample final exam in case it helps you plan better for the final exam:

- Sample final
- Sample final solutions
(These are also available under the "Sample Exams" dropdown menu from the banner on the 331 webpage. If you do not see it on your browser, refresh and/or clear the cache in your browser.)

Two comments:

- I would recommend that you not peek at the solution before you have worked on the sample final on your own.
- As with the sample mid-terms, do not try and deduce anything about the topic coverage in the actual final exam (I will post shortly on how to prepare for the final exam).
- However, the sample exam was an actual final exam in one of the past years. Your final exam will be of comparable difficulty.

Final exam post

Final exam post

I'll start off with some generic comments:

- The final exam will be based on all the material we will see in class up to NP-completeness of k-colorability (we'll finish that stuff by either Friday, Dec 8 or Monday, Dec 11).
- In case you want a head-start we will cover Sections 8.1-8.4 and Section 8.7 in the textbook. For the rest the schedule page details what sections of the book we have already covered.
- I know this does not give a huge lead time into the final exam but unfortunately since we are running one lecture behind previous years means less lead time than in previous years.
- Exam will be from 12:00pm to $\mathbf{2 : 3 0 m}$ on Wednesday, Dec 13 in class (NSC 201). Note that the exam will be for 2.5 hours and not 3 hours as it says on HUB.
 the makeup final exam.
- DO NOT FORGET TO BRING YOUR UB CARD TO THE EXAM (@504)

Next are comments related to preparing for the finals:

 see points below). Once you have spent time on it on your own, take a look at the sample final solutions (@503).
 just analyzing an algorithm.)
 quick summaries of (almost all) the lectures, review the lecture notes or slides or videos.
4. To get more practice for the T/F questions, review all the T/F polls on piazza (@60)

 ask any "proof based" Qs on that material.
 means that you should review your homeworks (all of them) before the exam. Also make sure to review the support pages and recitation notes.
7. If you are short on time and you are prioritizing the topics to study, keep points 5 and 6 above in mind.
 better feel for the material. In any case once you have read the material covered in class a couple of times, it might do your brain some good to read some different material.

Bring UB card to final exam!

note @504 ()

Assigned seating for final exam

Your seating for the final in NSC 201 will be assigned (and you won't be able to sit wherever you find a spot as it was for the mid-term).
I will release more details by Monday, Dec 11. In the meantime, two important things to remember:

- You will HAVE to have your UB card on you during the exam
- A TA will come and verify that you are seated in the correct row
- To facilitate the TAs checking your UB IDs, please keep your bag in the front of the room (i.e. not with you).

Makeup for final exam conflict

Course evaluations

Incentive for filling in course evals

As I have done in the past few years, depending on the level of response on the official course evals, I will release come questions on the final exam. (See @503 to see what Q I mean below)

- If $>=85 \%$ students submit the course evals, I will release $\mathbf{Q 1}(\mathrm{a})$
- If $>=\mathbf{9 0} \%$ students submit the course evals, I will release Q1(a) AND Q2(a)

Some other relevant comments:

- I will post the current response rate in the comments section below every 3 days starting Monday, Nov 27 till the deadline
- The \% is based on current number of students registered: i.e. it does not include students who have resigned
- I believe this is the link to the course evals: https://sunyub.smartevals.com
- But double check the email you might have received on this.

feedback

Reflection 2 grading post

 Reflection 2 has been graded

Reflection problem 2 has now been graded and the scores and feedback released on Autolab! Hopefully the feedback is helpful as y'all work on your Reflection Problem 3.

PLEASE READ THE RUBRIC CAREFULLY TO SEE THE COMMON MISTAKES, which y'all should avoid making for future reflection problem submissions. Also take a look at the feedback since in many cases I did not deduct points since this was the first submission where we have asked you to think about implications of your algorithm-the grading would be stricter reflection 3 onwards.

Few common mistakes:

- In argument for in favor vs not: not clearly stating why your algo idea leads to the claimed group being favored vs. not
- The algo idea not matching the code that was submitted.
(Please see the re-grade policy as well as the grading rubric below before contacting us with questions on grading.)
Here are the stats:
Problem Mean Median \quad Max \quad Min
Algo Idea
1.4
2.0
0.7
2.0
0.0

Questions?

Shortest Path Problem

Input: (Directed) Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and for every edge e has a cost c_{e} (can be <0)
t in V

Output: Shortest path from every s to t

Assume that G
has no negative cycle

When to use Dynamic Programming

There are polynomially many sub-problems

Richard Bellman
Optimal solution can be computed from solutions to sub-problems

There is an ordering among sub-problem that allows for iterative solution

Questions?

Today's agenda

Bellman-Ford algorithm

Analyze the run time

Algo on the board...

The recurrence

OPT(u,i) = shortest path from u to t with at most i edges
$\operatorname{OPT}(u, i)=\min \left\{\operatorname{OPT}(u, i-1), \min _{(u, w) \text { in } E}\left\{c_{u, w}+\operatorname{OPT}(w, i-1)\right\}\right\}$

Some consequences

OPT(u,i) = cost of shortest path from u to t with at most i edges

$$
\operatorname{OPT}(u, i)=\min \left\{O P T(u, i-1), \min _{(u, w) \text { in } E}\left\{c_{u, w}+O P T(w, i-1)\right\}\right\}
$$

```
OPT(u,n-1) is shortest path cost between }u\mathrm{ and t
```

How to compute the shortest path between s and t given all OPT(u,i) values

Bellman-Ford Algorithm

Runs in $\mathrm{O}(\mathrm{n}(\mathrm{m}+\mathrm{n}))$ time
Only needs O(n) additional space

Questions?

Reading Assignment

Sec 6.8 of [KT]

Longest path problem

Given G , does there exist a simple path of length $\mathrm{n}-1$?

Longest vs Shortest Paths

Two sides of the "same" coin

Shortest Path problem

Can be solved by a polynomial time algorithm

Is there a longest path of length $\mathrm{n}-1$?

Given a path can verify in polynomial time if the answer is yes

Poly time algo for longest path?

Clay Mathematics Institute

Dedicated to increasing and disseminating mathematical knowledge
HOME | ABOUT CMI | PROGRAMS | NEWS R EVENTS | AWARDS | SCHOLARS | PUBLICATIONS

First Clay Mathematics Institute Millennium Prize Announced

Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman

'Birch and Swinnerton-Dyer Conjecture

- Hodae Conjecture
- Navier-Stokes Equations
P vs NP
- Poincaré Conjecture

P vs NP question

P: problems that can be solved by poly time algorithms

NP: problems that have polynomial time verifiable witness to optimal solution

Proving $P \neq N P$

Pick any one problem in NP and show it cannot be solved in poly time

Proving $P=N P$

Will make cryptography collapse

Compute the encryption key!

Prove that all problems in NP can be solved by polynomial time algorithms

Solving any ONE problem in here in poly time will prove $\mathrm{P}=\mathrm{NP}$!

A book on P vs. NP

Questions?

The course so far...

The rest of the course...

