Lecture 5

CSE 331 Sep 8, 2023

Can you guess the correlation?

Fall 2013

Another comment

Discomfort with proofs

I will not cover proof basics in class anymore

Please read support pages and some utilize (next few) Office hours!

Lecture pace (until Fall 18)

Lecture pace

Register your project groups

Deadline: Friday, Sep 29, 11:59pm

CSE 331	Syllabus	Piazza	Schedule	Homeworks -	Autolab	Project -	Support Pages	- D channel	Sample Exams 👻	
Forming groups						Project Overview				
You form groups of size exactly three (3) for the project. Below are the various logis						Group sig	nup form			

- · You have two choices in forming your group:
 - 1. You can form your group on your own: i.e. you can submit the list of EXACTLY three (3) groups members in your group.

</> Note

Note that if you pick this option, your group needs to have **exactly THREE (3)** members. In particular, if your group has only two members you cannot submit as a group of size two. If you do not know many people in class, feel free to use piazza to look for the third group member.

Also, if you form a group of size three, please make only one submission per group.

2. You can submit *just your* name, and you will be assigned a random group *among all students who take this second option.* However, **note that if you pick this option you could end up in a group of size** 2. There will be at most two groups of size 2.

</> Potential risk

Note that if you pick the option of being assigned a random group, you take on the risk that a assigned group might not "pull their weight." We unfortunately cannot help with such aspects of group dynamics. (Of course if a group member is being abusive, please do let Atri know.) Please note that a group member who does not do much work will get penalized on the individual component of the project grade.

Submitting your group composition

Use this Google form Z to submit your group composition (the form will allow you to pick one of the two options above).

• You need to fill in the form for group composition by 11:59pm on Friday, September 30.

</> </> Deadline is strict!

rilese331fall22/project/overview.html# he form for group composition by the deadline, then you get a zero for the entire project.

Questions/Comments?

Questions to think about

(Perfect) Matching

A matching $S \subseteq M \times W$ such that following conditions hold:

S is a **set** of pairs (m,w) where m in M and w in W

(1) For every woman w in W, exist *at most* one m such that (m,w) in S exactly
 (2) For every man m in M, exist *at most* one w such that (m,w) in S

Perfect matching

On matchings

Mal

Wash

Simon

JOSS WHEDON'S

Inara

Zoe

Kaylee

A valid matching

Not a matching

Perfect Matching

Questions/Comments?

Preferences

Instability

Mal

Back to the board...

A stable matching

Even though BBT and JA are not very happy

Two stable matchings

Stable Matching problem

Set of men M and women W

Preferences (ranking of potential spouses)

Matching (no polyandry/gamy in M X W)

Perfect Matching (everyone gets married)

Instablity

Stable matching = perfect matching+ no instablity

Questions/Comments?

Two Questions

Does a stable marriage always exist?

If one exists, how quickly can we compute one?

Rest of today's lecture

Naïve algorithm

Gale-Shapley algorithm for Stable Marriage problem

Discuss: Naïve algorithm!

The naïve algorithm

Incremental algorithm to produce all n! prefect matchings?

Go through all possible perfect matchings S

If S is a stable matching

then Stop

Else move to the next perfect matching

Gale-Shapley Algorithm

David Gale

Lloyd Shapley

Moral of the story...

Questions/Comments?

