Lecture 9

CSE 331
Sep 18, 2023

Register your project groups Deadline: Friday, Sep 29, 11:59pm

CSE 331 Syllabus Piazza Schedule Homeworks Autolab Projectr Support Pages v channel Sample

Forming groups

You form groups of size exactly three (3) for the project. Below are the various logis
Project Overview

- You have two choices in forming your group:

1. You can form your group on your own: i.e. you can submit the list of EXACTLY three (3) groups members in your group.

</> Note

Note that if you pick this option, your group needs to have exactly THREE (3) members. In particular, if your group has only two members you cannot submit as a group of size two. If you do not know many people in class, feel free to use piazza to look for the third group member.
Also, if you form a group of size three, please make only one submission per group.
2. You can submit just your name, and you will be assigned a random group among all students who take this second option. However, note that if you pick this option you could end up in a group of size 2 . There will be at most two groups of size 2 .

</> Potential risk

Note that if you pick the option of being assigned a random group, you take on the risk that a assigned group might not "pull their weight." We unfortunately cannot help with such aspects of group dynamics. (Of course if a group member is being abusive, please do let Atri know.) Please note that a group member who does not do much work will get penalized on the individual component of the project grade.
-
Submitting your group composition
Use this Google form [^] to submit your group composition (the form will allow you to pick one of the two options above).

- You need to fill in the form for group composition by 11:59pm on Friday, September 30.

Follow ALL instructions on HW1

! Submit part (a) and (b) separately

You need to submit two (2) PDF files to Autolab: one for part (a) and one for part (b). While you can assume part (a) as a given for part (b), to get credit for part (a) you have to submit your solution for part (a) separately from part (b)
Make sure you submit the correct PDF to the correct submission link on Autolab. If you do not (e.g. if you submit Q1(a) PDF to Q1(b)), then you will lose ALL points. We recommend that you typeset your solution but we will accept scans of handwritten solution-- you have to make sure that the scan is legible.

! PDF only please

If Autolab cannot display your file, (irrespective of the reason) then you will get a zero (0) on the entire question.
Autolab might not be able to display files in formats other than PDF (e.g. Word cannot be displayed). Note that Autolab will "accept" your submission even if you submit non-PDF file, so it is YOUR responsibility to make sure you submit in the correct format.

Also the file size has to be at most 3MB.

Grading Guidelines

We will follow the usual grading guidelines for non-programming questions. Here is a high level grading rubric specific to part (a) of this problem:

1. Proof idea: 10 points.
and here is the high level grading rubric for part (b)
2. Proof/Algorithm idea: 20 points for

If your answer is yes: the idea behind the algorithm that for any input, computes a pair of stable schedules.

- If your answer is no: a counterexample idea explaining the insight behind why you think the property does not hold.

2. Proof/Algorithm details: 20 points for

If your answer is yes: details of the algorithm that for any input, computes a pair of stable schedules and an argument as to why your algorithm will always output a pair of stable schedules for every input.

- If your answer is no: a complete description of a counterexample and a complete proof for why the given counter example does not have any stable schedule.

! Note

If you do not have separated out proof/algorithm idea and proof/algorithm details for part (b), you will get a zero (0) irrespective of the technical correctness of your solution.

They are repeated on Autolab

Homework 1, Question 1(a)

Collaboration

You can collaborate on this question with up to two (2) more CSE 331 students. However, you cannot work with someone else outside of your group for the other questions on HW 1

Submit part (a) and (b) separately for Q1
You need to submit two (2) PDF files for Q1 to ANAalatco one for part (a) and one for part (b). While you can assume part (a) as a given for part (b), to get credt for part (a) you have to subemity your solution for part (a) separately from part (b)

Make sure you submit the correct PDF to the correct submission link on Autolab. If you do not (e.g. if you submit your Q21a| PDF to Q1|b) or any of $\mathrm{Q} 2(\mathrm{a})$ or Q2(b)), then you will lose ALL points

We recammend that you typeset your solution but we wil accept scans of handwitten solution- you have to mawn sure that the scan is legible
PDF only please
If Autolab cannot display your file, (irrespective of the reason) then you will get a zero (o) on the entire question.
Nutolab might not be able to display files in formats other than PDF ieg. Word cannot be displayed). Note that Autolab will "accept" your submission even if you submit non.PDF file, so it is YouR responsibility to make sure you submit in the correct format
Aloo the file sixe has to be at most 3Me.

Sources and Collaborators

\square by ciicking the check mark below, you conflim that you have listed your oollaborator
 \square

Submitting your PDF

Acknowledgment of CSE 331 instructions
Bycicidng tre check mark below, you corfimn that you hawe read and understood the instinctions in HW 1 |a wol ax the CSE 331 hamework polidies). Note that not

Review the HW policy doc!

CSE 331

HW 0
Soln 0
HW 1

:work Policies

Fall 2023
This page contains policies, suggestions and explanations of things related to CSE 331 homeworks. Please note that not following some of these policies can lead to a letter grade reduction or an \mathbf{F} in the course and not following some could lead to you getting a zero on your homework submission.

Please Note

It is your responsibility to make sure you read and understand the contents of this document. If you have any questions, please contact the instructor. Or better yet, make a post on Piazza ©

Overview

On this page, you can find more details on:

1. Source and Collaboration policy (or how not to get an F in this course);
2. Preparing your homework submissions (or how not to get a zero on a question);
3. Grading details (or what to expect on how your homework submissions will be graded);
4. Other helpful tips (or how to do better on the homeworks and in the course).

HW 1 (pre)post-mortem

(Advance view of) post-mortem on Homework 1

The post below is from Fall 2019 that I posted after HW1 was due but I figured I should post it a bit earlier this time in case it is helpful to some of you as y'all work on your HW 1 submissions.

Of course this would depend pretty much on you as an individual but here are some questions, in no particular order, for y'all to ponder on (with some of our comments in italics):

- Did you start early enough?
- We recommend that you start working on the homework on Wednesday immediately after the homework is handed out itself. And distribute your hours over the week rather than wait to start till Monday (or gasp! Tuesday).
- Did you go to the recitations AND read the recitation notes?
- Both of them help you a lot towards answering Q1(a) and Q2(a) so they are highly recommended.
- Did you work on the questions in correct order?
- We have the current order based on what we think is most beneficial to you. In particular, we want y^{\prime} all to focus more on the proof based questions, which is why they come before the programming question. But perhaps a different order would work better for you?
- Did you get help when you got stuck?
- If you were stuck at a problem for a long time did you ask for help on piazza? Did you go to one of the office hours?
- Did you work on all the problems alone?
- While working on all the problem by yourself will be good for you in the long run (since you are developing your proofs/algorithms skills), in the interest of time we recommend that you at least collaborate on Q2 (b).
- (If you submitted HW 0), did you get enough feedback?

Feedback on Q1(a) and Q2(a)

For feedback on your 1(a) or 2(a) solutions

If you want to get feedback on your 1(a) or 2(a) solution, you have to come to an office hour. We will NOT be giving feedback on your solutions on piazza.
The above is mainly because feedback general needs a bit of back and forth and piazza is not ideal for that (and as a secondary benefit this encourages students to show up for the office hours).
Of course please do keep posting any questions/confusion you might have on piazza!

```
piazza office_hours
```


If you need it, ask for help

Advice from TAs

CSE 331 Advice from TAs

Where students who took CSE 331 and became TAs share their experiences of how to fully utilize the class to your advantage. (And no, Atri did not pay them to say these things.)

This is a living document that will get updated over time. However, all the advice below is valid and you should pay attention to them!

The class is structured to your advantage

Utilize the before, during and after aspects of the course to their fullest.

Do the assigned readings before coming to class and if you get time even watch lecture videos from previous years. Atri will give you plenty of time during lecture to ask questions about the readings or the lecture itself. And of course get the most out of the assignments (Explained further below).

The assignments are separated into different parts for your convenience.

Questions 1 and 2

For Q1 and Q2, think of the algorithm and proof ideas as things that go inside a header (. h) file. They are the high level overview of how you are approaching the problem; you don't have to be very technical here. For example, listing out all the steps in your algorithm, what proof technique are you using, what property of the algorithm are you induction on, etc.

Questions/Comments?

Asymptotic Analysis

Travelling Salesman Problem (http://xkcd.com/399/)

Reading Assignment for today

note @86 (ㅇ)
 Reading Assignment: Asymptotic Analysis

As one of the changes made in F19, we will assume that y'all are familiar with asymptotic analysis and not spend reviewing it in any detail during the lectures. In case you are not that comfortable with asymptotic analysis and/or want to review the material, please read through the asymptotic analysis care package:
http://www-student.cse.buffalo.edu/~atri/cse331/support/care-package/asymptotics/index.html

We will need this either the middle of lecture on Wednesday or in the Friday lecture.

```
lectures
```


Which one is better?

Now?

And now?

The actual run times

$n!$
$100 n^{2}$
n^{2}

Asymptotic Notation

\leq is O with glasses
\geq is Ω with glasses
$=$ is Θ with glasses

Another view

remain anonymous on the web, let me know).
Silly way to remember asymptotic notation... Stick figure:

© Aleksandra Patrzalek, 2012

$\mathrm{g}(\mathrm{n})$ is $\mathrm{O}(\mathrm{f}(\mathrm{n})$)

$g(n)$ is $\Omega(f(n))$

$g(n)$ is $\Theta(f(n))$

Properties of O (and Ω)

Transitive

Additive
g is $O(f)$ and f is $O(h)$ then g is $O(h)$

Step $1 / / \mathrm{O}(\mathrm{n})$ time
Step $2 / / O(n)$ time
g is $O(h)$ and f is $O(h)$ then

$$
\mathrm{g}+\mathrm{f} \text { is } \mathrm{O}(\mathrm{~h})
$$

Overall: $\mathrm{O}(\mathrm{n})$ time

Multiplicative
g is $O\left(h_{1}\right)$ and f is $O\left(h_{2}\right)$ then $g^{*} f$ is $O\left(h_{1}{ }^{*} h_{2}\right)$

While (loop condition) // O(n^{2}) iterations Stuff happens // O(1) time

Questions?

Rest of today's agenda

$\mathrm{O}\left(\mathrm{n}^{2}\right)$ implementation of the Gale-Shapley algorithm

Some practice with run time analysis

Another Reading Assignment

Analyzing the worst-case runtime of an algorithm

Some notes on strategies to prove Big-Oh and Big-Omega bounds on runtime of an algorithm.

The setup

Let \mathcal{A} be the algorithm we are trying to analyze. Then we will define $T(N)$ to be the worst-case run-time of \mathcal{A} over all inputs of size N. Slightly more formally, let $t_{\mathcal{A}}(\mathbf{x})$ be the number of steps taken by the algorithm \mathcal{A} on input \mathbf{x}. Then

$$
T(N)=\max _{\mathbf{x}: \mathbf{x} \text { is of size } N} t_{\mathcal{A}}(\mathbf{x})
$$

In this note, we present two useful strategies to prove statements like $T(N)$ is $O(g(N))$ or $T(N)$ is $\Omega(h(N))$. Then we will analyze the run time of a very simple algorithm.

Preliminaries

We now collect two properties of asymptotic notation that we will need in this note (we saw these in class today).

Reading Assignments

Sections 1.1, 1.2, 2.1, 2.2 and 2.4 in [KT]

Gale-Shapley Algorithm

Intially all men and women are free

While there exists a free woman who can propose
Let w be such a woman and m be the best man she has not proposed to w proposes to m

If m is free
(m, w) get engaged
Else (m, w') are engaged
If m prefers w ' to w w remains free
Else

$$
(m, w) \text { get engaged and } w^{\prime} \text { is free }
$$

Output the engaged pairs as the final output

Implementation Steps

(0) How to represent the input?
(1) How do we find a free woman w?
(2) How would w pick her best unproposed man m ?
(3) How do we know who m is engaged to?
(4) How do we decide if m prefers w ' to w ?

Overall running time

$\operatorname{Init}(1-4)$

$n^{2} \times($ Query/Update(1-4) $)$

Questions?

Rest on the board...

